These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 28425703)
21. Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O Xiao N; Ren X; He M; McCulloch WD; Wu Y ACS Appl Mater Interfaces; 2017 Feb; 9(5):4301-4308. PubMed ID: 27408953 [TBL] [Abstract][Full Text] [Related]
22. Effects of the Electrode Wettability on the Deep Discharge Capacity of Li-O Wang F; Li X ACS Omega; 2018 Jun; 3(6):6006-6012. PubMed ID: 31458791 [TBL] [Abstract][Full Text] [Related]
23. Dual Roles of Li Bian X; Pang Q; Wei Y; Zhang D; Gao Y; Chen G Chemistry; 2018 Sep; 24(52):13815-13820. PubMed ID: 29975430 [TBL] [Abstract][Full Text] [Related]
24. Nanoporous Ru as a carbon- and binder-free cathode for Li-O2 batteries. Liao K; Zhang T; Wang Y; Li F; Jian Z; Yu H; Zhou H ChemSusChem; 2015 Apr; 8(8):1429-34. PubMed ID: 25809196 [TBL] [Abstract][Full Text] [Related]
25. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte. Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807 [TBL] [Abstract][Full Text] [Related]
26. Facile Synthesis of Boron-Doped rGO as Cathode Material for High Energy Li-O2 Batteries. Wu F; Xing Y; Li L; Qian J; Qu W; Wen J; Miller D; Ye Y; Chen R; Amine K; Lu J ACS Appl Mater Interfaces; 2016 Sep; 8(36):23635-45. PubMed ID: 27549204 [TBL] [Abstract][Full Text] [Related]
27. The effect of water on discharge product growth and chemistry in Li-O2 batteries. Kwabi DG; Batcho TP; Feng S; Giordano L; Thompson CV; Shao-Horn Y Phys Chem Chem Phys; 2016 Sep; 18(36):24944-53. PubMed ID: 27560806 [TBL] [Abstract][Full Text] [Related]
28. Fe-based hybrid electrocatalysts for nonaqueous lithium-oxygen batteries. Lee S; Lee GH; Lee HJ; Dar MA; Kim DW Sci Rep; 2017 Aug; 7(1):9495. PubMed ID: 28842692 [TBL] [Abstract][Full Text] [Related]
29. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries. Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975 [TBL] [Abstract][Full Text] [Related]
30. Limitations in Rechargeability of Li-O2 Batteries and Possible Origins. McCloskey BD; Bethune DS; Shelby RM; Mori T; Scheffler R; Speidel A; Sherwood M; Luntz AC J Phys Chem Lett; 2012 Oct; 3(20):3043-7. PubMed ID: 26292247 [TBL] [Abstract][Full Text] [Related]
31. Fabrication and Performance of All-Solid-State Li-Air Battery with SWCNTs/LAGP Cathode. Liu Y; Li B; Kitaura H; Zhang X; Han M; He P; Zhou H ACS Appl Mater Interfaces; 2015 Aug; 7(31):17307-10. PubMed ID: 26177186 [TBL] [Abstract][Full Text] [Related]
32. The Role of Air-Electrode Structure on the Incorporation of Immiscible PFCs in Nonaqueous Li-O Balaish M; Ein-Eli Y ACS Appl Mater Interfaces; 2017 Mar; 9(11):9726-9737. PubMed ID: 28230970 [TBL] [Abstract][Full Text] [Related]
33. Ag nanoparticles-anchored reduced graphene oxide catalyst for oxygen electrode reaction in aqueous electrolytes and also a non-aqueous electrolyte for Li-O2 cells. Kumar S; Selvaraj C; Scanlon LG; Munichandraiah N Phys Chem Chem Phys; 2014 Nov; 16(41):22830-40. PubMed ID: 25242373 [TBL] [Abstract][Full Text] [Related]
34. Elucidation and Comparison of the Effect of LiTFSI and LiNO Iliksu M; Khetan A; Yang S; Simon U; Pitsch H; Sauer DU ACS Appl Mater Interfaces; 2017 Jun; 9(22):19319-19325. PubMed ID: 28485949 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of porous CoMoO Wang L; Cui X; Gong L; Lyu Z; Zhou Y; Dong W; Liu J; Lai M; Huo F; Huang W; Lin M; Chen W Nanoscale; 2017 Mar; 9(11):3898-3904. PubMed ID: 28261709 [TBL] [Abstract][Full Text] [Related]
36. Micro-nano structured Ni-MOFs as high-performance cathode catalyst for rechargeable Li-O2 batteries. Hu X; Zhu Z; Cheng F; Tao Z; Chen J Nanoscale; 2015 Jul; 7(28):11833-40. PubMed ID: 26119364 [TBL] [Abstract][Full Text] [Related]
37. Mass transfer analysis of boron-doped carbon nanotube cathodes for dual-electrolyte lithium-air batteries. Wang Y; Yu M; Li J; Zhang T; Wang X; Hao M; Wang X; Cheng L; Sun H Phys Chem Chem Phys; 2022 Mar; 24(9):5604-5609. PubMed ID: 35175264 [TBL] [Abstract][Full Text] [Related]
38. Electrochemically Controlled Solid Electrolyte Interphase Layers Enable Superior Li-S Batteries. Wang Y; Lin CF; Rao J; Gaskell K; Rubloff G; Lee SB ACS Appl Mater Interfaces; 2018 Jul; 10(29):24554-24563. PubMed ID: 29956907 [TBL] [Abstract][Full Text] [Related]
39. A Li-O₂/air battery using an inorganic solid-state air cathode. Wang X; Zhu D; Song M; Cai S; Zhang L; Chen Y ACS Appl Mater Interfaces; 2014 Jul; 6(14):11204-10. PubMed ID: 24959838 [TBL] [Abstract][Full Text] [Related]
40. Carbon-Free CoO Mesoporous Nanowire Array Cathode for High-Performance Aprotic Li-O2 Batteries. Wu B; Zhang H; Zhou W; Wang M; Li X; Zhang H ACS Appl Mater Interfaces; 2015 Oct; 7(41):23182-9. PubMed ID: 26400109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]