BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 28425995)

  • 1. Widespread movement of meltwater onto and across Antarctic ice shelves.
    Kingslake J; Ely JC; Das I; Bell RE
    Nature; 2017 Apr; 544(7650):349-352. PubMed ID: 28425995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antarctic ice shelf potentially stabilized by export of meltwater in surface river.
    Bell RE; Chu W; Kingslake J; Das I; Tedesco M; Tinto KJ; Zappa CJ; Frezzotti M; Boghosian A; Lee WS
    Nature; 2017 Apr; 544(7650):344-348. PubMed ID: 28426005
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antarctic ice-sheet loss driven by basal melting of ice shelves.
    Pritchard HD; Ligtenberg SR; Fricker HA; Vaughan DG; van den Broeke MR; Padman L
    Nature; 2012 Apr; 484(7395):502-5. PubMed ID: 22538614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vulnerability of Antarctica's ice shelves to meltwater-driven fracture.
    Lai CY; Kingslake J; Wearing MG; Chen PC; Gentine P; Li H; Spergel JJ; van Wessem JM
    Nature; 2020 Aug; 584(7822):574-578. PubMed ID: 32848224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water.
    Silvano A; Rintoul SR; Peña-Molino B; Hobbs WR; van Wijk E; Aoki S; Tamura T; Williams GD
    Sci Adv; 2018 Apr; 4(4):eaap9467. PubMed ID: 29675467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Change in future climate due to Antarctic meltwater.
    Bronselaer B; Winton M; Griffies SM; Hurlin WJ; Rodgers KB; Sergienko OV; Stouffer RJ; Russell JL
    Nature; 2018 Dec; 564(7734):53-58. PubMed ID: 30455421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recharge of a subglacial lake by surface meltwater in northeast Greenland.
    Willis MJ; Herried BG; Bevis MG; Bell RE
    Nature; 2015 Feb; 518(7538):223-7. PubMed ID: 25607355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.
    Garabato AC; Forryan A; Dutrieux P; Brannigan L; Biddle LC; Heywood KJ; Jenkins A; Firing YL; Kimura S
    Nature; 2017 Feb; 542(7640):219-222. PubMed ID: 28135723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The multi-millennial Antarctic commitment to future sea-level rise.
    Golledge NR; Kowalewski DE; Naish TR; Levy RH; Fogwill CJ; Gasson EG
    Nature; 2015 Oct; 526(7573):421-5. PubMed ID: 26469052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves.
    Adusumilli S; Fricker HA; Medley B; Padman L; Siegfried MR
    Nat Geosci; 2020 Sep; 13(9):616-620. PubMed ID: 32952606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets.
    Pritchard HD; Arthern RJ; Vaughan DG; Edwards LA
    Nature; 2009 Oct; 461(7266):971-5. PubMed ID: 19776741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Massive subsurface ice formed by refreezing of ice-shelf melt ponds.
    Hubbard B; Luckman A; Ashmore DW; Bevan S; Kulessa B; Kuipers Munneke P; Philippe M; Jansen D; Booth A; Sevestre H; Tison JL; O'Leary M; Rutt I
    Nat Commun; 2016 Jun; 7():11897. PubMed ID: 27283778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in ice dynamics and mass balance of the Antarctic ice sheet.
    Rignot E
    Philos Trans A Math Phys Eng Sci; 2006 Jul; 364(1844):1637-55. PubMed ID: 16782604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread distribution of supraglacial lakes around the margin of the East Antarctic Ice Sheet.
    Stokes CR; Sanderson JE; Miles BWJ; Jamieson SSR; Leeson AA
    Sci Rep; 2019 Sep; 9(1):13823. PubMed ID: 31554854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations of Buried Lake Drainage on the Antarctic Ice Sheet.
    Dunmire D; Lenaerts JTM; Banwell AF; Wever N; Shragge J; Lhermitte S; Drews R; Pattyn F; Hansen JSS; Willis IC; Miller J; Keenan E
    Geophys Res Lett; 2020 Aug; 47(15):e2020GL087970. PubMed ID: 32999516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet.
    Smith LC; Chu VW; Yang K; Gleason CJ; Pitcher LH; Rennermalm AK; Legleiter CJ; Behar AE; Overstreet BT; Moustafa SE; Tedesco M; Forster RR; LeWinter AL; Finnegan DC; Sheng Y; Balog J
    Proc Natl Acad Sci U S A; 2015 Jan; 112(4):1001-6. PubMed ID: 25583477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Greenland ice sheet motion insensitive to exceptional meltwater forcing.
    Tedstone AJ; Nienow PW; Sole AJ; Mair DW; Cowton TR; Bartholomew ID; King MA
    Proc Natl Acad Sci U S A; 2013 Dec; 110(49):19719-24. PubMed ID: 24248343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global environmental consequences of twenty-first-century ice-sheet melt.
    Golledge NR; Keller ED; Gomez N; Naughten KA; Bernales J; Trusel LD; Edwards TL
    Nature; 2019 Feb; 566(7742):65-72. PubMed ID: 30728520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ocean-driven thinning enhances iceberg calving and retreat of Antarctic ice shelves.
    Liu Y; Moore JC; Cheng X; Gladstone RM; Bassis JN; Liu H; Wen J; Hui F
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):3263-8. PubMed ID: 25733856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt.
    Tuckett PA; Ely JC; Sole AJ; Livingstone SJ; Davison BJ; Melchior van Wessem J; Howard J
    Nat Commun; 2019 Sep; 10(1):4311. PubMed ID: 31541114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.