BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2842600)

  • 1. Preparation of protein phosphatase-resistant substrates using adenosine 5'-O-(gamma-thio)triphosphate.
    Li HC; Simonelli PF; Huan LJ
    Methods Enzymol; 1988; 159():346-56. PubMed ID: 2842600
    [No Abstract]   [Full Text] [Related]  

  • 2. Reconstitution of a Mg-ATP-dependent protein phosphatase and its activation through a phosphorylation mechanism.
    Hemmings BA; Resink TJ; Cohen P
    FEBS Lett; 1982 Dec; 150(2):319-24. PubMed ID: 6297978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 2. Differential inactivation measured with various protein substrates.
    King MM; Carlson GM
    Biochemistry; 1981 Jul; 20(15):4387-93. PubMed ID: 6793064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The control of phosphorylase kinase phosphatase activity by polycations and the deinhibitor protein.
    Goris J; Walsh DA; Merlevede W
    Biochem Biophys Res Commun; 1984 Nov; 125(1):293-8. PubMed ID: 6095839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoaffinity labeling of the beta subunit of phosphorylase kinase by 8-azidoadenosine 5'-triphosphate and its 2',3'-dialdehyde derivative.
    King MM; Carlson GM; Haley BE
    J Biol Chem; 1982 Dec; 257(23):14058-65. PubMed ID: 6897245
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphorylation and dephosphorylation of glycogen phosphorylase: a prototype for reversible covalent enzyme modification.
    Krebs EG
    Curr Top Cell Regul; 1981; 18():401-19. PubMed ID: 6268366
    [No Abstract]   [Full Text] [Related]  

  • 7. The broad specificity protein phosphatase from mammalian liver. Separation of the Mr 35 000 catalytic subunit into two distinct enzymes.
    Ingebritsen TS; Foulkes JG; Cohen P
    FEBS Lett; 1980 Sep; 119(1):9-15. PubMed ID: 6253321
    [No Abstract]   [Full Text] [Related]  

  • 8. The mechanism of activation of protein kinase FA (the activator of type-1 protein phosphatase) in brain synaptosomes.
    Yang SD; Yu JS; Fong YL; Liu JS
    Biochem Biophys Res Commun; 1992 Jan; 182(1):129-36. PubMed ID: 1310012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dephosphorylation of skeletal muscle phosphorylase, glycogen synthase, and phosphorylase kinase beta-subunit by a Mn2+-activated protein phosphatase.
    Brautigan DL; Khatra BS; Soderling TR; Fischer EH
    Arch Biochem Biophys; 1982 Nov; 219(1):228-35. PubMed ID: 6295283
    [No Abstract]   [Full Text] [Related]  

  • 10. The substrate specificity and regulation of the protein phosphatases involved in the control of glycogen metabolism in mammalian skeletal muscle.
    Cohen P; Nimmo GA; Burchell A; Antoniw JF
    Adv Enzyme Regul; 1977 Oct 3-4; 16():97-119. PubMed ID: 211821
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of phosphorylase kinase with the 2',3'-dialdehyde derivative of adenosine triphosphate. 1. Kinetics of inactivation.
    King MM; Carlson GM
    Biochemistry; 1981 Jul; 20(15):4382-7. PubMed ID: 7284329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Nobel prize for medicine, 1992].
    Blum HE
    Dtsch Med Wochenschr; 1992 Dec; 117(50):1935-8. PubMed ID: 1333946
    [No Abstract]   [Full Text] [Related]  

  • 13. Interconvertible enzyme cascades in cellular regulation.
    Chock PB; Rhee SG; Stadtman ER
    Annu Rev Biochem; 1980; 49():813-43. PubMed ID: 6105843
    [No Abstract]   [Full Text] [Related]  

  • 14. The regulation of glycogen metabolism. Phosphorylation of inhibitor-1 from rabbit skeletal muscle, and its interaction with protein phosphatases-III and -II.
    Nimmo GA; Cohen P
    Eur J Biochem; 1978 Jun; 87(2):353-65. PubMed ID: 208845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel aspects of skeletal muscle protein kinase and protein phosphatase regulation by Ca2+.
    Heilmeyer LM; Gröschel-Stewart U; Jahnke U; Kilimann MW; Kohse KP; Varsanyi M
    Adv Enzyme Regul; 1980; 18():121-44. PubMed ID: 6255766
    [No Abstract]   [Full Text] [Related]  

  • 16. Photoaffinity labelling shows that Escherichia coli isocitrate dehydrogenase kinase/phosphatase contains a single ATP-binding site.
    Varela I; Nimmo HG
    FEBS Lett; 1988 Apr; 231(2):361-5. PubMed ID: 2834232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hormonal control of glycogen metabolism. Phosphorylation of protein phosphatase inhibitor-1 in vivo in response to adrenaline.
    Foulkes JG; Cohen P
    Eur J Biochem; 1979 Jun; 97(1):251-6. PubMed ID: 225171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of phosphorylation of protein phosphatase 1 by pp60v-src on the interaction of the enzyme with substrates and inhibitor proteins.
    Johansen JW; Ingebritsen TS
    Biochim Biophys Acta; 1987 Apr; 928(1):63-75. PubMed ID: 3030448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of phosphoprotein phosphatase by phosphorylation of other proteins in skeletal muscle.
    Gergely P; Dombrádi V; Bot G
    FEBS Lett; 1978 Sep; 93(2):239-41. PubMed ID: 213308
    [No Abstract]   [Full Text] [Related]  

  • 20. Regulation by phosphorylase kinase of phosphoprotein phosphatase activity: simultaneous control of protein phosphorylation and dephosphorylation in skeletal muscle.
    Gergely P; Bot G
    Acta Biochim Biophys Acad Sci Hung; 1981; 16(3-4):163-78. PubMed ID: 6291302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.