These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28426088)

  • 1. Nanoscale imaging and spectroscopy of band gap and defects in polycrystalline photovoltaic devices.
    Yoon Y; Chae J; Katzenmeyer AM; Yoon HP; Schumacher J; An S; Centrone A; Zhitenev N
    Nanoscale; 2017 Jun; 9(23):7771-7780. PubMed ID: 28426088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale imaging of photocurrent and efficiency in CdTe solar cells.
    Leite MS; Abashin M; Lezec HJ; Gianfrancesco A; Talin AA; Zhitenev NB
    ACS Nano; 2014 Nov; 8(11):11883-90. PubMed ID: 25317926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Chemical Analysis at the Nanoscale Using the Photothermal Induced Resonance Technique.
    Ramer G; Aksyuk VA; Centrone A
    Anal Chem; 2017 Dec; 89(24):13524-13531. PubMed ID: 29165992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale infrared spectroscopy: improving the spectral range of the photothermal induced resonance technique.
    Katzenmeyer AM; Aksyuk V; Centrone A
    Anal Chem; 2013 Feb; 85(4):1972-9. PubMed ID: 23363013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unveiling Defect-Mediated Charge-Carrier Recombination at the Nanometer Scale in Polycrystalline Solar Cells.
    Yoon Y; Yang WD; Ha D; Haney PM; Hirsch D; Yoon HP; Sharma R; Zhitenev NB
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):47037-47046. PubMed ID: 31747519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of optical near field in nanophotonics devices at the nanoscale using Scanning Thermal Microscopy.
    Grajower M; Desiatov B; Goykhman I; Stern L; Mazurski N; Levy U
    Opt Express; 2015 Oct; 23(21):27763-75. PubMed ID: 26480438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution.
    Jakob DS; Centrone A
    Anal Chem; 2022 Nov; 94(45):15564-15569. PubMed ID: 36321942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale Characterization of Photocurrent and Photovoltage in Polycrystalline Solar Cells.
    Ha D; Yoon Y; Park IJ; Cantu LT; Martinez A; Zhitenev N
    J Phys Chem C Nanomater Interfaces; 2023 Jun; 127(24):11429-11437. PubMed ID: 37377500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique.
    Lahiri B; Holland G; Centrone A
    Small; 2013 Feb; 9(3):439-45. PubMed ID: 23034929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging.
    Castellanos-Gomez A; Quereda J; van der Meulen HP; Agraït N; Rubio-Bollinger G
    Nanotechnology; 2016 Mar; 27(11):115705. PubMed ID: 26876671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoinduced Tip-Sample Forces for Chemical Nanoimaging and Spectroscopy.
    O'Callahan BT; Yan J; Menges F; Muller EA; Raschke MB
    Nano Lett; 2018 Sep; 18(9):5499-5505. PubMed ID: 30080975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Infrared Chemical Nano-Imaging: Accessing Structure, Coupling, and Dynamics on Molecular Length Scales.
    Muller EA; Pollard B; Raschke MB
    J Phys Chem Lett; 2015 Apr; 6(7):1275-84. PubMed ID: 26262987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gap-Plasmon-Enhanced High-Spatial-Resolution Imaging by Photothermal-Induced Resonance in the Visible Range.
    Zhou J; Smirnov A; Dietler G; Sekatskii SK
    Nano Lett; 2019 Nov; 19(11):8278-8286. PubMed ID: 31650844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties.
    Kutes Y; Luria J; Sun Y; Moore A; Aguirre BA; Cruz-Campa JL; Aindow M; Zubia D; Huey BD
    Nanotechnology; 2017 May; 28(18):185705. PubMed ID: 28397709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Electronic Structure Changes in Polycrystalline CdTe with CdCl
    Berg M; Kephart JM; Munshi A; Sampath WS; Ohta T; Chan C
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9817-9822. PubMed ID: 29528212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-infrared nano-imaging spectroscopy using a phase change mask method.
    Sato Y; Kanazawa S; Saiki T
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i10. PubMed ID: 25359798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples.
    Dominguez G; Mcleod AS; Gainsforth Z; Kelly P; Bechtel HA; Keilmann F; Westphal A; Thiemens M; Basov DN
    Nat Commun; 2014 Dec; 5():5445. PubMed ID: 25487365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.