These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 28426096)

  • 1. Managing the sequence-specificity of antisense oligonucleotides in drug discovery.
    Hagedorn PH; Hansen BR; Koch T; Lindow M
    Nucleic Acids Res; 2017 Mar; 45(5):2262-2282. PubMed ID: 28426096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis.
    Vickers TA; Koo S; Bennett CF; Crooke ST; Dean NM; Baker BF
    J Biol Chem; 2003 Feb; 278(9):7108-18. PubMed ID: 12500975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using RNA-seq to Assess Off-Target Effects of Antisense Oligonucleotides in Human Cell Lines.
    Michel S; Schirduan K; Shen Y; Klar R; Tost J; Jaschinski F
    Mol Diagn Ther; 2021 Jan; 25(1):77-85. PubMed ID: 33314011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hepatotoxicity of high affinity gapmer antisense oligonucleotides is mediated by RNase H1 dependent promiscuous reduction of very long pre-mRNA transcripts.
    Burel SA; Hart CE; Cauntay P; Hsiao J; Machemer T; Katz M; Watt A; Bui HH; Younis H; Sabripour M; Freier SM; Hung G; Dan A; Prakash TP; Seth PP; Swayze EE; Bennett CF; Crooke ST; Henry SP
    Nucleic Acids Res; 2016 Mar; 44(5):2093-109. PubMed ID: 26553810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antisense oligonucleotides: the state of the art.
    Aboul-Fadl T
    Curr Med Chem; 2005; 12(19):2193-214. PubMed ID: 16178780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells.
    Yoshida T; Naito Y; Yasuhara H; Sasaki K; Kawaji H; Kawai J; Naito M; Okuda H; Obika S; Inoue T
    Genes Cells; 2019 Dec; 24(12):827-835. PubMed ID: 31637814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of lipoprotein metabolism by antisense technology: preclinical drug discovery methodology.
    Crooke RM; Graham MJ
    Methods Mol Biol; 2013; 1027():309-24. PubMed ID: 23912993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overview of target validation and the impact of oligonucleotides.
    Jones SW; Lindsay MA
    Curr Opin Mol Ther; 2004 Oct; 6(5):546-50. PubMed ID: 15537056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA.
    Mahato RI; Cheng K; Guntaka RV
    Expert Opin Drug Deliv; 2005 Jan; 2(1):3-28. PubMed ID: 16296732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligonucleotide-based knockdown technologies: antisense versus RNA interference.
    Achenbach TV; Brunner B; Heermeier K
    Chembiochem; 2003 Oct; 4(10):928-35. PubMed ID: 14523910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying and avoiding off-target effects of RNase H-dependent antisense oligonucleotides in mice.
    Hagedorn PH; Pontoppidan M; Bisgaard TS; Berrera M; Dieckmann A; Ebeling M; Møller MR; Hudlebusch H; Jensen ML; Hansen HF; Koch T; Lindow M
    Nucleic Acids Res; 2018 Jun; 46(11):5366-5380. PubMed ID: 29790953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antisense therapeutics: is it as simple as complementary base recognition?
    Agrawal S; Kandimalla ER
    Mol Med Today; 2000 Feb; 6(2):72-81. PubMed ID: 10652480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carba-LNA-5MeC/A/G/T modified oligos show nucleobase-specific modulation of 3'-exonuclease activity, thermodynamic stability, RNA selectivity, and RNase H elicitation: synthesis and biochemistry.
    Upadhayaya R; Deshpande SG; Li Q; Kardile RA; Sayyed AY; Kshirsagar EK; Salunke RV; Dixit SS; Zhou C; Földesi A; Chattopadhyaya J
    J Org Chem; 2011 Jun; 76(11):4408-31. PubMed ID: 21500818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyamine-oligonucleotide conjugates: a promising direction for nucleic acid tools and therapeutics.
    Menzi M; Lightfoot HL; Hall J
    Future Med Chem; 2015; 7(13):1733-49. PubMed ID: 26424049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning of ENA gapmers as antisense oligonucleotides for sequence-specific inhibition.
    Takagi-Sato M; Tokuhiro S; Kawaida R; Koizumi M
    Oligonucleotides; 2007; 17(3):291-301. PubMed ID: 17854269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding affinity and specificity of Escherichia coli RNase H1: impact on the kinetics of catalysis of antisense oligonucleotide-RNA hybrids.
    Lima WF; Crooke ST
    Biochemistry; 1997 Jan; 36(2):390-8. PubMed ID: 9003192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic criteria for high hit rate antisense oligonucleotide design.
    Matveeva OV; Mathews DH; Tsodikov AD; Shabalina SA; Gesteland RF; Atkins JF; Freier SM
    Nucleic Acids Res; 2003 Sep; 31(17):4989-94. PubMed ID: 12930948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural rearrangements in RNA on the binding of an antisense oligonucleotide: implications for the study of intra-molecular RNA interactions and the design of cooperatively acting antisense reagents with enhanced efficacy.
    Sohail M; Doran G; Kang S; Akhtar S; Southern EM
    J Drug Target; 2005 Jan; 13(1):61-70. PubMed ID: 15848955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term and long-term modulation of gene expression by antisense therapeutics.
    Sazani P; Vacek MM; Kole R
    Curr Opin Biotechnol; 2002 Oct; 13(5):468-72. PubMed ID: 12459339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2'-Modified oligonucleotides for antisense therapeutics.
    Prakash TP; Bhat B
    Curr Top Med Chem; 2007; 7(7):641-9. PubMed ID: 17430205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.