BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 28426098)

  • 1. Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism.
    Morel D; Almouzni G; Soria JC; Postel-Vinay S
    Ann Oncol; 2017 Feb; 28(2):254-269. PubMed ID: 28426098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting epigenetic vulnerabilities in solid tumors: Novel therapeutic opportunities in the treatment of SWI/SNF-defective cancers.
    Chabanon RM; Morel D; Postel-Vinay S
    Semin Cancer Biol; 2020 Apr; 61():180-198. PubMed ID: 31568814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic synthetic lethality approaches in cancer therapy.
    Yang H; Cui W; Wang L
    Clin Epigenetics; 2019 Oct; 11(1):136. PubMed ID: 31590683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic lethal therapy based on targeting the vulnerability of SWI/SNF chromatin remodeling complex-deficient cancers.
    Sasaki M; Ogiwara H
    Cancer Sci; 2020 Mar; 111(3):774-782. PubMed ID: 31955490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ARID1A mutant ovarian clear cell carcinoma: A clear target for synthetic lethal strategies.
    Caumanns JJ; Wisman GBA; Berns K; van der Zee AGJ; de Jong S
    Biochim Biophys Acta Rev Cancer; 2018 Dec; 1870(2):176-184. PubMed ID: 30025943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin-Remodeled State in Lymphoma.
    Liu Y; Gonzalez Y; Amengual JE
    Curr Hematol Malig Rep; 2019 Oct; 14(5):439-450. PubMed ID: 31489524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression.
    Ogiwara H; Sasaki M; Mitachi T; Oike T; Higuchi S; Tominaga Y; Kohno T
    Cancer Discov; 2016 Apr; 6(4):430-45. PubMed ID: 26603525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetic modifiers as new immunomodulatory therapies in solid tumours.
    Aspeslagh S; Morel D; Soria JC; Postel-Vinay S
    Ann Oncol; 2018 Apr; 29(4):812-824. PubMed ID: 29432557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SMARCA2/4 ATPase Domain Surpasses the Bromodomain as a Drug Target in SWI/SNF-Mutant Cancers: Insights from cDNA Rescue and PFI-3 Inhibitor Studies.
    Vangamudi B; Paul TA; Shah PK; Kost-Alimova M; Nottebaum L; Shi X; Zhan Y; Leo E; Mahadeshwar HS; Protopopov A; Futreal A; Tieu TN; Peoples M; Heffernan TP; Marszalek JR; Toniatti C; Petrocchi A; Verhelle D; Owen DR; Draetta G; Jones P; Palmer WS; Sharma S; Andersen JN
    Cancer Res; 2015 Sep; 75(18):3865-3878. PubMed ID: 26139243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Chromatin remodeling defects and cancer: the SWI/SNF example].
    Bourdeaut F; Bièche I
    Bull Cancer; 2012 Dec; 99(12):1133-40. PubMed ID: 23222069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2.
    Christofides A; Karantanos T; Bardhan K; Boussiotis VA
    Oncotarget; 2016 Dec; 7(51):85624-85640. PubMed ID: 27793053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromatin-regulating proteins as targets for cancer therapy.
    Oike T; Ogiwara H; Amornwichet N; Nakano T; Kohno T
    J Radiat Res; 2014 Jul; 55(4):613-28. PubMed ID: 24522270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver mutations of cancer epigenomes.
    Roy DM; Walsh LA; Chan TA
    Protein Cell; 2014 Apr; 5(4):265-96. PubMed ID: 24622842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation in human melanoma: past and future.
    Sarkar D; Leung EY; Baguley BC; Finlay GJ; Askarian-Amiri ME
    Epigenetics; 2015; 10(2):103-21. PubMed ID: 25587943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic drugs against cancer: an evolving landscape.
    Di Costanzo A; Del Gaudio N; Migliaccio A; Altucci L
    Arch Toxicol; 2014 Sep; 88(9):1651-68. PubMed ID: 25085708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Chromatin Remodeling for Cancer Therapy.
    Kaur J; Daoud A; Eblen ST
    Curr Mol Pharmacol; 2019; 12(3):215-229. PubMed ID: 30767757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inactivating mutations in SWI/SNF chromatin remodeling genes in human cancer.
    Oike T; Ogiwara H; Nakano T; Yokota J; Kohno T
    Jpn J Clin Oncol; 2013 Sep; 43(9):849-55. PubMed ID: 23904343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone Modifying Enzymes and Chromatin Modifiers in Glioma Pathobiology and Therapy Responses.
    Ciechomska IA; Jayaprakash C; Maleszewska M; Kaminska B
    Adv Exp Med Biol; 2020; 1202():259-279. PubMed ID: 32034718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation.
    Wang X; Lee RS; Alver BH; Haswell JR; Wang S; Mieczkowski J; Drier Y; Gillespie SM; Archer TC; Wu JN; Tzvetkov EP; Troisi EC; Pomeroy SL; Biegel JA; Tolstorukov MY; Bernstein BE; Park PJ; Roberts CW
    Nat Genet; 2017 Feb; 49(2):289-295. PubMed ID: 27941797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paediatric Strategy Forum for medicinal product development of epigenetic modifiers for children: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration.
    Pearson AD; Stegmaier K; Bourdeaut F; Reaman G; Heenen D; Meyers ML; Armstrong SA; Brown P; De Carvalho D; Jabado N; Marshall L; Rivera M; Smith M; Adamson PC; Barone A; Baumann C; Blackman S; Buenger V; Donoghue M; Duncan AD; Fox E; Gadbaw B; Hattersley M; Ho P; Jacobs I; Kelly MJ; Kieran M; Lesa G; Ligas F; Ludwinski D; McDonough J; Nikolova Z; Norga K; Senderowicz A; Taube T; Weiner S; Karres D; Vassal G
    Eur J Cancer; 2020 Nov; 139():135-148. PubMed ID: 32992153
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.