BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28426192)

  • 1. Profiling Cellular Substrates of Lysine Acetyltransferases GCN5 and p300 with Orthogonal Labeling and Click Chemistry.
    Han Z; Chou CW; Yang X; Bartlett MG; Zheng YG
    ACS Chem Biol; 2017 Jun; 12(6):1547-1555. PubMed ID: 28426192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and Profiling of Histone Acetyltransferase Substrates by Bioorthogonal Labeling.
    Song J; Han Z; Zheng YG
    Curr Protoc; 2022 Jul; 2(7):e497. PubMed ID: 35849593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics.
    Yang YY; Grammel M; Hang HC
    Bioorg Med Chem Lett; 2011 Sep; 21(17):4976-9. PubMed ID: 21669532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influenza A virus nucleoprotein is acetylated by histone acetyltransferases PCAF and GCN5.
    Hatakeyama D; Shoji M; Yamayoshi S; Yoh R; Ohmi N; Takenaka S; Saitoh A; Arakaki Y; Masuda A; Komatsu T; Nagano R; Nakano M; Noda T; Kawaoka Y; Kuzuhara T
    J Biol Chem; 2018 May; 293(19):7126-7138. PubMed ID: 29555684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation.
    Jin Q; Yu LR; Wang L; Zhang Z; Kasper LH; Lee JE; Wang C; Brindle PK; Dent SY; Ge K
    EMBO J; 2011 Jan; 30(2):249-62. PubMed ID: 21131905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assays to Study Enzymatic and Non-Enzymatic Protein Lysine Acetylation In Vitro.
    Graf LG; Vogt R; Blasl AT; Qin C; Schulze S; Zühlke D; Sievers S; Lammers M
    Curr Protoc; 2021 Nov; 1(11):e277. PubMed ID: 34748287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in specificity and selectivity between CBP and p300 acetylation of histone H3 and H3/H4.
    Henry RA; Kuo YM; Andrews AJ
    Biochemistry; 2013 Aug; 52(34):5746-59. PubMed ID: 23862699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of lysine isobutyrylation as a new histone modification mark.
    Zhu Z; Han Z; Halabelian L; Yang X; Ding J; Zhang N; Ngo L; Song J; Zeng H; He M; Zhao Y; Arrowsmith CH; Luo M; Bartlett MG; Zheng YG
    Nucleic Acids Res; 2021 Jan; 49(1):177-189. PubMed ID: 33313896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemoproteomic Profiling of Protein Substrates of a Major Lysine Acetyltransferase in the Native Cellular Context.
    Song J; Ngo L; Bell K; Zheng YG
    ACS Chem Biol; 2022 May; 17(5):1092-1102. PubMed ID: 35417122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitating the specificity and selectivity of Gcn5-mediated acetylation of histone H3.
    Kuo YM; Andrews AJ
    PLoS One; 2013; 8(2):e54896. PubMed ID: 23437046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysine propionylation and butyrylation are novel post-translational modifications in histones.
    Chen Y; Sprung R; Tang Y; Ball H; Sangras B; Kim SC; Falck JR; Peng J; Gu W; Zhao Y
    Mol Cell Proteomics; 2007 May; 6(5):812-9. PubMed ID: 17267393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Acetylomics Reveals Substrates of Lysine Acetyltransferase GCN5 in Adult and Aging
    Li J; Cao Y; Yang Y; Ma H; Zhao J; Zhang Y; Liu N
    J Proteome Res; 2023 Sep; 22(9):2909-2924. PubMed ID: 37545086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Mobility Shift Profiling of Lysine Acetyltransferases Enables Screening and Mechanistic Analysis of Cellular Acetylation Inhibitors.
    Sorum AW; Shrimp JH; Roberts AM; Montgomery DC; Tiwari NK; Lal-Nag M; Simeonov A; Jadhav A; Meier JL
    ACS Chem Biol; 2016 Mar; 11(3):734-41. PubMed ID: 26428393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioorthogonal Reporters for Detecting and Profiling Protein Acetylation and Acylation.
    Song J; Zheng YG
    SLAS Discov; 2020 Feb; 25(2):148-162. PubMed ID: 31711353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. KATs off: Biomedical insights from lysine acetyltransferase inhibitors.
    Whedon SD; Cole PA
    Curr Opin Chem Biol; 2023 Feb; 72():102255. PubMed ID: 36584580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli.
    Christensen DG; Meyer JG; Baumgartner JT; D'Souza AK; Nelson WC; Payne SH; Kuhn ML; Schilling B; Wolfe AJ
    mBio; 2018 Oct; 9(5):. PubMed ID: 30352934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for acyl-group discrimination by human Gcn5L2.
    Ringel AE; Wolberger C
    Acta Crystallogr D Struct Biol; 2016 Jul; 72(Pt 7):841-8. PubMed ID: 27377381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalysis by protein acetyltransferase Gcn5.
    Albaugh BN; Denu JM
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194627. PubMed ID: 32841743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes.
    Uhrig RG; Schläpfer P; Mehta D; Hirsch-Hoffmann M; Gruissem W
    BMC Genomics; 2017 Jul; 18(1):514. PubMed ID: 28679357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and prediction of lysine (K)-acetyl-transferase specific acetylation sites.
    Li T; Du Y; Wang L; Huang L; Li W; Lu M; Zhang X; Zhu WG
    Mol Cell Proteomics; 2012 Jan; 11(1):M111.011080. PubMed ID: 21964354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.