BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 28426241)

  • 1. Extracellular Heme Uptake and the Challenge of Bacterial Cell Membranes.
    Huang W; Wilks A
    Annu Rev Biochem; 2017 Jun; 86():799-823. PubMed ID: 28426241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracellular haem utilization by the opportunistic pathogen Pseudomonas aeruginosa and its role in virulence and pathogenesis.
    Mouriño S; Wilks A
    Adv Microb Physiol; 2021; 79():89-132. PubMed ID: 34836613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular heme uptake and the challenges of bacterial cell membranes.
    Smith AD; Wilks A
    Curr Top Membr; 2012; 69():359-92. PubMed ID: 23046657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heme protects Pseudomonas aeruginosa and Staphylococcus aureus from calprotectin-induced iron starvation.
    Zygiel EM; Obisesan AO; Nelson CE; Oglesby AG; Nolan EM
    J Biol Chem; 2021; 296():100160. PubMed ID: 33273016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular basis of recognition of antibacterial porphyrins by heme-transporter IsdH-NEAT3 of Staphylococcus aureus.
    Moriwaki Y; Caaveiro JM; Tanaka Y; Tsutsumi H; Hamachi I; Tsumoto K
    Biochemistry; 2011 Aug; 50(34):7311-20. PubMed ID: 21797259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural biology of heme binding in the Staphylococcus aureus Isd system.
    Grigg JC; Ukpabi G; Gaudin CF; Murphy ME
    J Inorg Biochem; 2010 Mar; 104(3):341-8. PubMed ID: 19853304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passage of heme-iron across the envelope of Staphylococcus aureus.
    Mazmanian SK; Skaar EP; Gaspar AH; Humayun M; Gornicki P; Jelenska J; Joachmiak A; Missiakas DM; Schneewind O
    Science; 2003 Feb; 299(5608):906-9. PubMed ID: 12574635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcus aureus heme and siderophore-iron acquisition pathways.
    Conroy BS; Grigg JC; Kolesnikov M; Morales LD; Murphy MEP
    Biometals; 2019 Jun; 32(3):409-424. PubMed ID: 30911924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Mechanisms and regulation of iron and heme utilization in Gram-negative bacteria].
    Siudeja K; Olczak T
    Postepy Biochem; 2005; 51(2):198-208. PubMed ID: 16209357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues.
    Ghysels B; Ochsner U; Möllman U; Heinisch L; Vasil M; Cornelis P; Matthijs S
    FEMS Microbiol Lett; 2005 May; 246(2):167-74. PubMed ID: 15899402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-regulated surface determinants (Isd) of Staphylococcus aureus: stealing iron from heme.
    Skaar EP; Schneewind O
    Microbes Infect; 2004 Apr; 6(4):390-7. PubMed ID: 15101396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular metalloporphyrin metabolism in Staphylococcus aureus.
    Reniere ML; Torres VJ; Skaar EP
    Biometals; 2007 Jun; 20(3-4):333-45. PubMed ID: 17387580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into a novel family of integral membrane siderophore reductases.
    Josts I; Veith K; Normant V; Schalk IJ; Tidow H
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34417315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA.
    Balhesteros H; Shipelskiy Y; Long NJ; Majumdar A; Katz BB; Santos NM; Leaden L; Newton SM; Marques MV; Klebba PE
    J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28031282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways.
    Schalk IJ; Guillon L
    Amino Acids; 2013 May; 44(5):1267-77. PubMed ID: 23443998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron acquisition and transport in Staphylococcus aureus.
    Maresso AW; Schneewind O
    Biometals; 2006 Apr; 19(2):193-203. PubMed ID: 16718604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the fatty acid coenzyme-A ligase FadD1 as an interacting partner of FptX in the Pseudomonas aeruginosa pyochelin pathway.
    Roche B; Mislin GLA; Schalk IJ
    FEBS Lett; 2021 Feb; 595(3):370-378. PubMed ID: 33289089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Staphylococcus aureus FepA and FepB proteins drive heme iron utilization in Escherichia coli.
    Turlin E; Débarbouillé M; Augustyniak K; Gilles AM; Wandersman C
    PLoS One; 2013; 8(2):e56529. PubMed ID: 23437157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Siderophore-mediated iron acquisition in the staphylococci.
    Beasley FC; Heinrichs DE
    J Inorg Biochem; 2010 Mar; 104(3):282-8. PubMed ID: 19850350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citrate-mediated iron uptake in Pseudomonas aeruginosa: involvement of the citrate-inducible FecA receptor and the FeoB ferrous iron transporter.
    Marshall B; Stintzi A; Gilmour C; Meyer JM; Poole K
    Microbiology (Reading); 2009 Jan; 155(Pt 1):305-315. PubMed ID: 19118371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.