These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 28426686)

  • 1. Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation.
    Previte DM; O'Connor EC; Novak EA; Martins CP; Mollen KP; Piganelli JD
    PLoS One; 2017; 12(4):e0175549. PubMed ID: 28426686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycolysis Inhibition Induces Functional and Metabolic Exhaustion of CD4
    Martins CP; New LA; O'Connor EC; Previte DM; Cargill KR; Tse IL; Sims-Lucas S; Piganelli JD
    Front Immunol; 2021; 12():669456. PubMed ID: 34163475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mn porphyrin regulation of aerobic glycolysis: implications on the activation of diabetogenic immune cells.
    Delmastro-Greenwood MM; Votyakova T; Goetzman E; Marre ML; Previte DM; Tovmasyan A; Batinic-Haberle I; Trucco MM; Piganelli JD
    Antioxid Redox Signal; 2013 Dec; 19(16):1902-15. PubMed ID: 23682840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes.
    Padgett LE; Anderson B; Liu C; Ganini D; Mason RP; Piganelli JD; Mathews CE; Tse HM
    Diabetes; 2015 Dec; 64(12):4171-83. PubMed ID: 26269022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic reprogramming towards aerobic glycolysis correlates with greater proliferative ability and resistance to metabolic inhibition in CD8 versus CD4 T cells.
    Cao Y; Rathmell JC; Macintyre AN
    PLoS One; 2014; 9(8):e104104. PubMed ID: 25090630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased Mitochondrial Biogenesis and Reactive Oxygen Species Production Accompany Prolonged CD4
    Akkaya B; Roesler AS; Miozzo P; Theall BP; Al Souz J; Smelkinson MG; Kabat J; Traba J; Sack MN; Brzostowski JA; Pena M; Dorward DW; Pierce SK; Akkaya M
    J Immunol; 2018 Dec; 201(11):3294-3306. PubMed ID: 30373851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions.
    Dimeloe S; Mehling M; Frick C; Loeliger J; Bantug GR; Sauder U; Fischer M; Belle R; Develioglu L; Tay S; Langenkamp A; Hess C
    J Immunol; 2016 Jan; 196(1):106-14. PubMed ID: 26621861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide production by macrophages and T cells is critical for the induction of autoreactivity and type 1 diabetes.
    Thayer TC; Delano M; Liu C; Chen J; Padgett LE; Tse HM; Annamali M; Piganelli JD; Moldawer LL; Mathews CE
    Diabetes; 2011 Aug; 60(8):2144-51. PubMed ID: 21715554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NADPH Oxidase-Derived Superoxide Provides a Third Signal for CD4 T Cell Effector Responses.
    Padgett LE; Tse HM
    J Immunol; 2016 Sep; 197(5):1733-42. PubMed ID: 27474077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Oxygen Species and Their Implications on CD4
    Previte DM; Piganelli JD
    Antioxid Redox Signal; 2018 Nov; 29(14):1399-1414. PubMed ID: 28990401
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases.
    Chávez MD; Tse HM
    Front Immunol; 2021; 12():703972. PubMed ID: 34276700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Oxygen Species in Autoimmune Cells: Function, Differentiation, and Metabolism.
    Lin W; Shen P; Song Y; Huang Y; Tu S
    Front Immunol; 2021; 12():635021. PubMed ID: 33717180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions.
    Cretenet G; Clerc I; Matias M; Loisel S; Craveiro M; Oburoglu L; Kinet S; Mongellaz C; Dardalhon V; Taylor N
    Sci Rep; 2016 Apr; 6():24129. PubMed ID: 27067254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism.
    Franchina DG; Dostert C; Brenner D
    Trends Immunol; 2018 Jun; 39(6):489-502. PubMed ID: 29452982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic ApoE-/- mice.
    Di Marco E; Gray SP; Chew P; Kennedy K; Cooper ME; Schmidt HH; Jandeleit-Dahm KA
    Clin Sci (Lond); 2016 Aug; 130(15):1363-74. PubMed ID: 27190136
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hypoxia and/or lack of glucose on cellular energy metabolism and cytokine production in stimulated human CD4+ T lymphocytes.
    Dziurla R; Gaber T; Fangradt M; Hahne M; Tripmacher R; Kolar P; Spies CM; Burmester GR; Buttgereit F
    Immunol Lett; 2010 Jun; 131(1):97-105. PubMed ID: 20206208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immune effects of glycolysis or oxidative phosphorylation metabolic pathway in protecting against bacterial infection.
    Li Y; Jia A; Wang Y; Dong L; Wang Y; He Y; Wang S; Cao Y; Yang H; Bi Y; Liu G
    J Cell Physiol; 2019 Nov; 234(11):20298-20309. PubMed ID: 30972784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive Oxygen Species Regulate the Inflammatory Function of NKT Cells through Promyelocytic Leukemia Zinc Finger.
    Kim YH; Kumar A; Chang CH; Pyaram K
    J Immunol; 2017 Nov; 199(10):3478-3487. PubMed ID: 29021374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy.
    Tian B; Hao J; Zhang Y; Tian L; Yi H; O'Brien TD; Sutherland DE; Hering BJ; Guo Z
    Transplantation; 2009 Jan; 87(2):198-206. PubMed ID: 19155973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propofol regulates activated macrophages metabolism through inhibition of ROS-mediated GLUT1 expression.
    Zeng W; Xing Z; Tan M; Wu Y; Zhang C
    Inflamm Res; 2021 Apr; 70(4):473-481. PubMed ID: 33751130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.