These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 28426739)
1. Artificial neural network and SARIMA based models for power load forecasting in Turkish electricity market. Bozkurt ÖÖ; Biricik G; Tayşi ZC PLoS One; 2017; 12(4):e0175915. PubMed ID: 28426739 [TBL] [Abstract][Full Text] [Related]
2. Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks. Jin J; Kim J PLoS One; 2015; 10(11):e0142064. PubMed ID: 26539722 [TBL] [Abstract][Full Text] [Related]
3. Forecasting Day-Ahead Electricity Metrics with Artificial Neural Networks. Pavićević M; Popović T Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161797 [TBL] [Abstract][Full Text] [Related]
4. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network. Yu Y; Wang Y; Gao S; Tang Z Comput Intell Neurosci; 2017; 2017():7436948. PubMed ID: 28246527 [TBL] [Abstract][Full Text] [Related]
5. An intelligent sales forecasting system through integration of artificial neural networks and fuzzy neural networks with fuzzy weight elimination. Kuo RJ; Wu P; Wang CP Neural Netw; 2002 Sep; 15(7):909-25. PubMed ID: 14672167 [TBL] [Abstract][Full Text] [Related]
6. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model. Qiu M; Song Y PLoS One; 2016; 11(5):e0155133. PubMed ID: 27196055 [TBL] [Abstract][Full Text] [Related]
7. A Hybrid Neural Network Model for Sales Forecasting Based on ARIMA and Search Popularity of Article Titles. Omar H; Hoang VH; Liu DR Comput Intell Neurosci; 2016; 2016():9656453. PubMed ID: 27313605 [TBL] [Abstract][Full Text] [Related]
8. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model. Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283 [TBL] [Abstract][Full Text] [Related]
9. A Real-Time Electrical Load Forecasting in Jordan Using an Enhanced Evolutionary Feedforward Neural Network. Alhmoud L; Abu Khurma R; Al-Zoubi AM; Aljarah I Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577447 [TBL] [Abstract][Full Text] [Related]
10. Cross-correlation detection and analysis for California's electricity market based on analogous multifractal analysis. Wang F; Liao GP; Li JH; Zou RB; Shi W Chaos; 2013 Mar; 23(1):013129. PubMed ID: 23556966 [TBL] [Abstract][Full Text] [Related]
11. Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller. Ko HS; Lee KY; Kang MJ; Kim HC Neural Netw; 2008 Dec; 21(10):1439-46. PubMed ID: 18996680 [TBL] [Abstract][Full Text] [Related]
12. Good times bad times: Automated forecasting of seasonal cryptosporidiosis in Ontario using machine learning. Berke O; Trotz-Williams L; de Montigny S Can Commun Dis Rep; 2020 Jun; 46(6):192-197. PubMed ID: 32673377 [TBL] [Abstract][Full Text] [Related]
13. A New Approach to Detection of Systematic Errors in Secondary Substation Monitoring Equipment Based on Short Term Load Forecasting. Moriano J; Rodríguez FJ; Martín P; Jiménez JA; Vuksanovic B Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26771613 [TBL] [Abstract][Full Text] [Related]
14. Improved Neural Networks with Random Weights for Short-Term Load Forecasting. Lang K; Zhang M; Yuan Y PLoS One; 2015; 10(12):e0143175. PubMed ID: 26629825 [TBL] [Abstract][Full Text] [Related]
15. Individualized Short-Term Electric Load Forecasting Using Data-Driven Meta-Heuristic Method Based on LSTM Network. Sun L; Qin H; Przystupa K; Majka M; Kochan O Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298250 [TBL] [Abstract][Full Text] [Related]
16. Short-Term Demand Forecasting Method in Power Markets Based on the KSVM-TCN-GBRT. Yang G; Du S; Duan Q; Su J Comput Intell Neurosci; 2022; 2022():6909558. PubMed ID: 35535191 [TBL] [Abstract][Full Text] [Related]
17. An adaptive backpropagation algorithm for long-term electricity load forecasting. Mohammed NA; Al-Bazi A Neural Comput Appl; 2022; 34(1):477-491. PubMed ID: 34393381 [TBL] [Abstract][Full Text] [Related]
18. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Hippert HS; Taylor JW Neural Netw; 2010 Apr; 23(3):386-95. PubMed ID: 20022462 [TBL] [Abstract][Full Text] [Related]
19. Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets. Mureddu M; Caldarelli G; Chessa A; Scala A; Damiano A PLoS One; 2015; 10(9):e0135312. PubMed ID: 26335705 [TBL] [Abstract][Full Text] [Related]
20. Electricity forecasting on the individual household level enhanced based on activity patterns. Gajowniczek K; Ząbkowski T PLoS One; 2017; 12(4):e0174098. PubMed ID: 28423039 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]