These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28426916)

  • 21. Simultaneous extraction and quantification of albendazole and triclabendazole using vortex-assisted hollow-fiber liquid-phase microextraction combined with high-performance liquid chromatography.
    Asadi M; Haji Shabani AM; Dadfarnia S
    J Sep Sci; 2016 Jun; 39(12):2238-45. PubMed ID: 27079953
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of modified dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the simultaneous preconcentration and determination of nitrazepam and midazolam drugs: An experimental design.
    Goudarzi N; Farsimadan S; Chamjangali MA; Bagherian GA
    J Sep Sci; 2015 May; 38(10):1673-9. PubMed ID: 25755221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples.
    Kamarei F; Ebrahimzadeh H; Yamini Y
    Talanta; 2010 Nov; 83(1):36-41. PubMed ID: 21035640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High performance liquid chromatographic determination of ultra traces of two tricyclic antidepressant drugs imipramine and trimipramine in urine samples after their dispersive liquid-liquid microextraction coupled with response surface optimization.
    Shamsipur M; Mirmohammadi M
    J Pharm Biomed Anal; 2014 Nov; 100():271-278. PubMed ID: 25178259
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.
    Chen J; Zhou G; Deng Y; Cheng H; Shen J; Gao Y; Peng G
    J Sep Sci; 2016 Jan; 39(2):272-8. PubMed ID: 26553707
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combination of dispersive solid phase extraction and deep eutectic solvent-based air-assisted liquid-liquid microextraction followed by gas chromatography-mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids.
    Mohebbi A; Yaripour S; Farajzadeh MA; Afshar Mogaddam MR
    J Chromatogr A; 2018 Oct; 1571():84-93. PubMed ID: 30119972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of dispersive liquid-liquid microextraction for the preconcentration of eight parabens in real samples and their determination by high-performance liquid chromatography.
    Shen X; Liang J; Zheng L; Lv Q; Wang H
    J Sep Sci; 2017 Nov; 40(22):4385-4393. PubMed ID: 28877408
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extraction optimization of polycyclic aromatic hydrocarbons by alcoholic-assisted dispersive liquid-liquid microextraction and their determination by HPLC.
    Fatemi MH; Hadjmohammadi MR; Shakeri P; Biparva P
    J Sep Sci; 2012 Jan; 35(1):86-92. PubMed ID: 22125263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple and fast method for iron determination in white and red wines using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry.
    Maciel JV; Soares BM; Mandlate JS; Picoloto RS; Bizzi CA; Flores EM; Duarte FA
    J Agric Food Chem; 2014 Aug; 62(33):8340-5. PubMed ID: 25072643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.
    Arain SA; Kazi TG; Afridi HI; Arain MS; Panhwar AH; Khan N; Baig JA; Shah F
    Ecotoxicol Environ Saf; 2016 Apr; 126():186-192. PubMed ID: 26761783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic stirring-assisted dispersive liquid-liquid microextraction followed by high performance liquid chromatography for determination of phthalate esters in drinking and environmental water samples.
    Ranjbari E; Hadjmohammadi MR
    Talanta; 2012 Oct; 100():447-53. PubMed ID: 23141363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. UV-vis spectrophotometric determination of trinitrotoluene (TNT) with trioctylmethylammonium chloride as ion pair assisted and disperser agent after dispersive liquid-liquid microextraction.
    Larki A; Nasrabadi MR; Pourreza N
    Forensic Sci Int; 2015 Jun; 251():77-82. PubMed ID: 25863701
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extraction and determination of opium alkaloids in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.
    Shamsipur M; Fattahi N
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Oct; 879(28):2978-83. PubMed ID: 21925978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples.
    Rajabi M; Kamalabadi M; Jamali MR; Zolgharnein J; Asanjarani N
    Hum Exp Toxicol; 2013 Jun; 32(6):620-31. PubMed ID: 22893353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dispersive liquid-liquid microextraction combined with online preconcentration MEKC for the determination of some phenoxyacetic acids in drinking water.
    Zhang Y; Jiao B
    J Sep Sci; 2013 Sep; 36(18):3067-74. PubMed ID: 23897833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using dispersive liquid-liquid microextraction and liquid chromatography for determination of guaifenesin enantiomers in human urine.
    Hatami M; Farhadi K; Abdollahpour A
    J Sep Sci; 2011 Nov; 34(21):2933-9. PubMed ID: 21972192
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of ultrasound-enhanced air-assisted liquid-liquid microextraction and low-density solvent-based dispersive liquid-liquid microextraction methods for determination of nonsteroidal anti-inflammatory drugs in human urine samples.
    Barfi B; Asghari A; Rajabi M; Goochani Moghadam A; Mirkhani N; Ahmadi F
    J Pharm Biomed Anal; 2015; 111():297-305. PubMed ID: 25916913
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid extraction and determination of amphetamines in human urine samples using dispersive liquid-liquid microextraction and solidification of floating organic drop followed by high performance liquid chromatography.
    Ahmadi-Jouibari T; Fattahi N; Shamsipur M
    J Pharm Biomed Anal; 2014 Jun; 94():145-51. PubMed ID: 24583909
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cyclodextrin-assisted dispersive liquid-liquid microextraction for the preconcentration of carbamazepine and clobazam with subsequent sweeping micellar electrokinetic chromatography.
    Chen SY; Chen WC; Chang SY
    J Sep Sci; 2018 Apr; 41(8):1871-1879. PubMed ID: 29330897
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new supramolecular based liquid solid microextraction method for preconcentration and determination of trace bismuth in human blood serum and hair samples by electrothermal atomic absorption spectrometry.
    Kahe H; Chamsaz M
    Environ Monit Assess; 2016 Nov; 188(11):601. PubMed ID: 27699649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.