BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 28426923)

  • 1. Potassium-Promoted Molybdenum Carbide as a Highly Active and Selective Catalyst for CO
    Porosoff MD; Baldwin JW; Peng X; Mpourmpakis G; Willauer HD
    ChemSusChem; 2017 Jun; 10(11):2408-2415. PubMed ID: 28426923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molybdenum carbide catalyst for the reduction of CO
    Reddy KP; Dama S; Mhamane NB; Ghosalya MK; Raja T; Satyanarayana CV; Gopinath CS
    Dalton Trans; 2019 Aug; 48(32):12199-12209. PubMed ID: 31334723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.
    Meiri N; Dinburg Y; Amoyal M; Koukouliev V; Nehemya RV; Landau MV; Herskowitz M
    Faraday Discuss; 2015; 183():197-215. PubMed ID: 26444296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum carbide as alternative catalysts to precious metals for highly selective reduction of CO2 to CO.
    Porosoff MD; Yang X; Boscoboinik JA; Chen JG
    Angew Chem Int Ed Engl; 2014 Jun; 53(26):6705-9. PubMed ID: 24839958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO
    Li Y; Cai X; Chen S; Zhang H; Zhang KHL; Hong J; Chen B; Kuo DH; Wang W
    ChemSusChem; 2018 Mar; 11(6):1040-1047. PubMed ID: 29424046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of liquid fuel via direct hydrogenation of CO
    He Z; Cui M; Qian Q; Zhang J; Liu H; Han B
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12654-12659. PubMed ID: 31182598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-processing CH4 and oxygenates on Mo/H-ZSM-5: 2. CH4-CO2 and CH4-HCOOH mixtures.
    Bedard J; Hong DY; Bhan A
    Phys Chem Chem Phys; 2013 Aug; 15(29):12173-9. PubMed ID: 23703320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Biomass Gasification Mineral Residue as Catalyst to Produce Light Olefins from CO, CO
    Ten Have IC; van den Brink RY; Marie-Rose SC; Meirer F; Weckhuysen BM
    ChemSusChem; 2022 Jun; 15(11):e202200436. PubMed ID: 35294803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of methanol from CO
    Tang Q; Shen Z; Huang L; He T; Adidharma H; Russell AG; Fan M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18539-18555. PubMed ID: 28685170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-light photoredox catalysis: selective reduction of carbon dioxide to carbon monoxide by a nickel N-heterocyclic carbene-isoquinoline complex.
    Thoi VS; Kornienko N; Margarit CG; Yang P; Chang CJ
    J Am Chem Soc; 2013 Sep; 135(38):14413-24. PubMed ID: 24033186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum carbide as an efficient catalyst for low-temperature hydrogenation of dimethyl oxalate.
    Liu Y; Ding J; Sun J; Zhang J; Bi J; Liu K; Kong F; Xiao H; Sun Y; Chen J
    Chem Commun (Camb); 2016 Apr; 52(28):5030-2. PubMed ID: 26983560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of the potassium promoter on the kinetics and thermodynamics of CO adsorption on a bulk iron catalyst applied in Fischer-Tropsch synthesis: a quantitative adsorption calorimetry, temperature-programmed desorption, and surface hydrogenation study.
    Graf B; Muhler M
    Phys Chem Chem Phys; 2011 Mar; 13(9):3701-10. PubMed ID: 21170422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran.
    Xiong K; Lee WS; Bhan A; Chen JG
    ChemSusChem; 2014 Aug; 7(8):2146-9. PubMed ID: 24757086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO
    Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y
    Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization by 27Al NMR, X-ray absorption spectroscopy, and density functional theory techniques of the species responsible for benzene hydrogenation in Y zeolite-supported carburized molybdenum catalysts.
    Rocha AS; da Silva VT; Eon JG; de Menezes SM; Faro AC; Rocha AB
    J Phys Chem B; 2006 Aug; 110(32):15803-11. PubMed ID: 16898729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition.
    Zheng W; Cotter TP; Kaghazchi P; Jacob T; Frank B; Schlichte K; Zhang W; Su DS; Schüth F; Schlögl R
    J Am Chem Soc; 2013 Mar; 135(9):3458-64. PubMed ID: 23350903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical Reverse Shift: Sustainable CO
    Thor Wismann S; Larsen KE; Mølgaard Mortensen P
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202109696. PubMed ID: 34931745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon Dioxide Hydrogenation into Higher Hydrocarbons and Oxygenates: Thermodynamic and Kinetic Bounds and Progress with Heterogeneous and Homogeneous Catalysis.
    Prieto G
    ChemSusChem; 2017 Mar; 10(6):1056-1070. PubMed ID: 28247481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal (Mo, W, Ti) Carbide Catalysts: Synthesis and Application as Alternative Catalysts for Dry Reforming of Hydrocarbons-A Review.
    Czaplicka N; Rogala A; Wysocka I
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative CO2 reforming of methane in La0.6Sr0.4Co0.8Ga0.2O3-δ (LSCG) hollow fiber membrane reactor.
    Kathiraser Y; Wang Z; Kawi S
    Environ Sci Technol; 2013 Dec; 47(24):14510-7. PubMed ID: 24274713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.