These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28426989)

  • 1. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.
    Epting J; Scheidler S; Affolter A; Borer P; Mueller MH; Egli L; García-Gil A; Huggenberger P
    Sci Total Environ; 2017 Oct; 596-597():87-96. PubMed ID: 28426989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining monitoring and modelling tools as a basis for city-scale concepts for a sustainable thermal management of urban groundwater resources.
    Mueller MH; Huggenberger P; Epting J
    Sci Total Environ; 2018 Jun; 627():1121-1136. PubMed ID: 29426130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The subsurface urban heat island in Milan (Italy) - A modeling approach covering present and future thermal effects on groundwater regimes.
    Previati A; Epting J; Crosta GB
    Sci Total Environ; 2022 Mar; 810():152119. PubMed ID: 34871675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal influences on groundwater in urban environments - A multivariate statistical analysis of the subsurface heat island effect in Munich.
    Böttcher F; Zosseder K
    Sci Total Environ; 2022 Mar; 810():152193. PubMed ID: 34890669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deterministic modeling of the impact of underground structures on urban groundwater temperature.
    Attard G; Rossier Y; Winiarski T; Eisenlohr L
    Sci Total Environ; 2016 Dec; 572():986-994. PubMed ID: 27531465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term evolution of anthropogenic heat fluxes into a subsurface urban heat island.
    Menberg K; Blum P; Schaffitel A; Bayer P
    Environ Sci Technol; 2013 Sep; 47(17):9747-55. PubMed ID: 23895264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal impact of underground car parks on urban groundwater.
    Noethen M; Hemmerle H; Menberg K; Epting J; Benz SA; Blum P; Bayer P
    Sci Total Environ; 2023 Dec; 903():166572. PubMed ID: 37633394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of underground climate change on urban geothermal potential: Lessons learnt from a case study in London.
    Bidarmaghz A; Choudhary R; Narsilio G; Soga K
    Sci Total Environ; 2021 Jul; 778():146196. PubMed ID: 33714806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-scale urban underground hydro-thermal modelling - A case study of the Royal Borough of Kensington and Chelsea, London.
    Bidarmaghz A; Choudhary R; Soga K; Terrington RL; Kessler H; Thorpe S
    Sci Total Environ; 2020 Jan; 700():134955. PubMed ID: 31739273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Case Studies of Geothermal System Response to Perturbations in Groundwater Flow and Thermal Regimes.
    Abesser C; Schincariol RA; Raymond J; García-Gil A; Drysdale R; Piatek A; Giordano N; Jaziri N; Molson J
    Ground Water; 2023 Mar; 61(2):255-273. PubMed ID: 33586172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermal consequences of river-level variations in an urban groundwater body highly affected by groundwater heat pumps.
    García-Gil A; Vázquez-Suñe E; Schneider EG; Sánchez-Navarro JÁ; Mateo-Lázaro J
    Sci Total Environ; 2014 Jul; 485-486():575-587. PubMed ID: 24747249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.
    Wildemeersch S; Jamin P; Orban P; Hermans T; Klepikova M; Nguyen F; Brouyère S; Dassargues A
    J Contam Hydrol; 2014 Nov; 169():90-99. PubMed ID: 25201639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Thermal impact of subsurface urban structures on groundwater temperatures in the city of Basel].
    Becker D; Epting J
    Grundwasser (Berl); 2021; 26(3):269-288. PubMed ID: 34075306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustainable intensive thermal use of the shallow subsurface-a critical view on the status quo.
    Vienken T; Schelenz S; Rink K; Dietrich P
    Ground Water; 2015; 53(3):356-61. PubMed ID: 24826995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of simplifications on numerical modelling of the shallow subsurface at city-scale and implications for shallow geothermal potential.
    Makasis N; Kreitmair MJ; Bidarmaghz A; Farr GJ; Scheidegger JM; Choudhary R
    Sci Total Environ; 2021 Oct; 791():148236. PubMed ID: 34412391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing anthropogenic heat input and heat accumulation in the subsurface of Osaka, Japan.
    Benz SA; Bayer P; Blum P; Hamamoto H; Arimoto H; Taniguchi M
    Sci Total Environ; 2018 Dec; 643():1127-1136. PubMed ID: 30189530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is thermal use of groundwater a pollution?
    Blum P; Menberg K; Koch F; Benz SA; Tissen C; Hemmerle H; Bayer P
    J Contam Hydrol; 2021 May; 239():103791. PubMed ID: 33799016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of urban aquifer exploitation on subsurface temperature and water quality.
    Abe H; Tang C; Kondoh A
    Ground Water; 2014 Sep; 52 Suppl 1():186-94. PubMed ID: 24393085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial resolution of anthropogenic heat fluxes into urban aquifers.
    Benz SA; Bayer P; Menberg K; Jung S; Blum P
    Sci Total Environ; 2015 Aug; 524-525():427-39. PubMed ID: 25930242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Groundwater flow velocities in a fractured carbonate aquifer-type: Implications for contaminant transport.
    Medici G; West LJ; Banwart SA
    J Contam Hydrol; 2019 Apr; 222():1-16. PubMed ID: 30795856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.