These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28427010)

  • 61. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.
    Gordon TD; Tkacik DS; Presto AA; Zhang M; Jathar SH; Nguyen NT; Massetti J; Truong T; Cicero-Fernandez P; Maddox C; Rieger P; Chattopadhyay S; Maldonado H; Maricq MM; Robinson AL
    Environ Sci Technol; 2013 Dec; 47(24):14137-46. PubMed ID: 24261886
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Metabolic engineering for the production of hydrocarbon fuels.
    Lee SY; Kim HM; Cheon S
    Curr Opin Biotechnol; 2015 Jun; 33():15-22. PubMed ID: 25445543
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Energy and emission benefits of alternative transportation liquid fuels derived from switchgrass: a fuel life cycle assessment.
    Wu M; Wu Y; Wang M
    Biotechnol Prog; 2006; 22(4):1012-24. PubMed ID: 16889378
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bioconversion of natural gas to liquid fuel: opportunities and challenges.
    Fei Q; Guarnieri MT; Tao L; Laurens LM; Dowe N; Pienkos PT
    Biotechnol Adv; 2014; 32(3):596-614. PubMed ID: 24726715
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli.
    Howard TP; Middelhaufe S; Moore K; Edner C; Kolak DM; Taylor GN; Parker DA; Lee R; Smirnoff N; Aves SJ; Love J
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7636-41. PubMed ID: 23610415
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Animal fats valorization to green transportations fuels: From concept to industrially relevant scale validation.
    Dimitriadis A; Chrysikou LP; Kokkalis AI; Doufas LI; Bezergianni S
    Waste Manag; 2022 Apr; 143():242-252. PubMed ID: 35290841
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst.
    Xu J; Jiang J; Sun Y; Chen J
    Bioresour Technol; 2010 Dec; 101(24):9803-6. PubMed ID: 20696566
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Elucidating the differences in oxidation of high-performance α- and β- diisobutylene biofuels via Synchrotron photoionization mass spectrometry.
    Terracciano AC; Neupane S; Popolan-Vaida DM; Blair RG; Hansen N; Vaghjiani GL; Vasu SS
    Sci Rep; 2020 Dec; 10(1):21776. PubMed ID: 33311537
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Water consumption in the production of ethanol and petroleum gasoline.
    Wu M; Mintz M; Wang M; Arora S
    Environ Manage; 2009 Nov; 44(5):981-97. PubMed ID: 19774326
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fuelling the future: microbial engineering for the production of sustainable biofuels.
    Liao JC; Mi L; Pontrelli S; Luo S
    Nat Rev Microbiol; 2016 Apr; 14(5):288-304. PubMed ID: 27026253
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Engineering bacteria for production of sustainable polycyclopropanated jet fuel alternatives.
    Woolston BM
    Trends Biotechnol; 2022 Dec; 40(12):1399-1400. PubMed ID: 36302713
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Biosynthesis of fatty acid-derived hydrocarbons: perspectives on enzymology and enzyme engineering.
    Liu K; Li S
    Curr Opin Biotechnol; 2020 Apr; 62():7-14. PubMed ID: 31539870
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Plant triacylglycerols as feedstocks for the production of biofuels.
    Durrett TP; Benning C; Ohlrogge J
    Plant J; 2008 May; 54(4):593-607. PubMed ID: 18476866
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Engineering microbes to produce biofuels.
    Wackett LP
    Curr Opin Biotechnol; 2011 Jun; 22(3):388-93. PubMed ID: 21071201
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals.
    Yuzawa S; Keasling JD; Katz L
    J Antibiot (Tokyo); 2016 Jul; 69(7):494-9. PubMed ID: 27245558
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Biobased production of alkanes and alkenes through metabolic engineering of microorganisms.
    Kang MK; Nielsen J
    J Ind Microbiol Biotechnol; 2017 May; 44(4-5):613-622. PubMed ID: 27565672
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.
    Ramakrishnan M; Rathinam TM; Viswanathan K
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4621-4631. PubMed ID: 29192402
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel.
    Imdadul HK; Zulkifli NW; Masjuki HH; Kalam MA; Kamruzzaman M; Rashed MM; Rashedul HK; Alwi A
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):2350-2363. PubMed ID: 27815850
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Life cycle analysis of fuel production from fast pyrolysis of biomass.
    Han J; Elgowainy A; Dunn JB; Wang MQ
    Bioresour Technol; 2013 Apr; 133():421-8. PubMed ID: 23454388
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Iterative polyketide biosynthesis by modular polyketide synthases in bacteria.
    Chen H; Du L
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):541-57. PubMed ID: 26549236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.