These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28427151)

  • 1. Fine tuning of vitamin D receptor (VDR) activity by post-transcriptional and post-translational modifications.
    Zenata O; Vrzal R
    Oncotarget; 2017 May; 8(21):35390-35402. PubMed ID: 28427151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel N-terminal variant of human VDR.
    Sunn KL; Cock TA; Crofts LA; Eisman JA; Gardiner EM
    Mol Endocrinol; 2001 Sep; 15(9):1599-609. PubMed ID: 11518809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter-, cell-, and ligand-specific transactivation responses of the VDRB1 isoform.
    Esteban LM; Fong C; Amr D; Cock TA; Allison SJ; Flanagan JL; Liddle C; Eisman JA; Gardiner EM
    Biochem Biophys Res Commun; 2005 Aug; 334(1):9-15. PubMed ID: 15992766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. c-Jun NH2-teminal kinase 1 interacts with vitamin D receptor and affects vitamin D-mediated inhibition of cancer cell proliferation.
    Bi X; Shi Q; Zhang H; Bao Y; Hu D; Pohl N; Fang W; Dong H; Xia X; Fan D; Yang W
    J Steroid Biochem Mol Biol; 2016 Oct; 163():164-72. PubMed ID: 27174721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Where is the vitamin D receptor?
    Wang Y; Zhu J; DeLuca HF
    Arch Biochem Biophys; 2012 Jul; 523(1):123-33. PubMed ID: 22503810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.
    Dimitrov V; Salehi-Tabar R; An BS; White JH
    J Steroid Biochem Mol Biol; 2014 Oct; 144 Pt A():74-80. PubMed ID: 23911725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1alpha,25-dihydroxyvitamin D3 inducible transcription factor and its role in the vitamin D action.
    Nezbedova P; Brtko J
    Endocr Regul; 2004 Mar; 38(1):29-38. PubMed ID: 15147236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The vitamin D hormone and its nuclear receptor: molecular actions and disease states.
    Haussler MR; Haussler CA; Jurutka PW; Thompson PD; Hsieh JC; Remus LS; Selznick SH; Whitfield GK
    J Endocrinol; 1997 Sep; 154 Suppl():S57-73. PubMed ID: 9379138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation of the wild-type and mutant vitamin D receptors by vitamin D3 analogs.
    Futawaka K; Tagami T; Fukuda Y; Koyama R; Nushida A; Nezu S; Yamamoto H; Imamoto M; Kasahara M; Moriyama K
    J Mol Endocrinol; 2016 Jul; 57(1):23-32. PubMed ID: 27154546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Current Topics on Vitamin D. Mechanism of molecular action of vitamin D via its nuclear receptor].
    Kato S; Morita T
    Clin Calcium; 2015 Mar; 25(3):333-40. PubMed ID: 25716805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CDK11p58 represses vitamin D receptor-mediated transcriptional activation through promoting its ubiquitin-proteasome degradation.
    Chi Y; Hong Y; Zong H; Wang Y; Zou W; Yang J; Kong X; Yun X; Gu J
    Biochem Biophys Res Commun; 2009 Aug; 386(3):493-8. PubMed ID: 19538938
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the human vitamin D receptor by caspase-3.
    Malloy PJ; Feldman D
    Endocrinology; 2009 Feb; 150(2):679-86. PubMed ID: 18832097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VDR regulation of microRNA differs across prostate cell models suggesting extremely flexible control of transcription.
    Singh PK; Long MD; Battaglia S; Hu Q; Liu S; Sucheston-Campbell LE; Campbell MJ
    Epigenetics; 2015; 10(1):40-9. PubMed ID: 25494645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Update on recent progress in vitamin D research. Molecular basis of epigenetic regulation by vitamin D via its nuclear receptor.].
    Kato S; Nishimura KI; Mori JI
    Clin Calcium; 2017; 27(11):1543-1550. PubMed ID: 29074826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)₂vitamin D₃: genomic and non-genomic mechanisms.
    Haussler MR; Jurutka PW; Mizwicki M; Norman AW
    Best Pract Res Clin Endocrinol Metab; 2011 Aug; 25(4):543-59. PubMed ID: 21872797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,25-Dihydroxyvitamin D3 up-regulates the renal vitamin D receptor through indirect gene activation and receptor stabilization.
    Healy KD; Frahm MA; DeLuca HF
    Arch Biochem Biophys; 2005 Jan; 433(2):466-73. PubMed ID: 15581603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanism of vitamin D receptor action.
    Issa LL; Leong GM; Eisman JA
    Inflamm Res; 1998 Dec; 47(12):451-75. PubMed ID: 9892040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quercetin enhances VDR activity, leading to stimulation of its target gene expression in Caco-2 cells.
    Inoue J; Choi JM; Yoshidomi T; Yashiro T; Sato R
    J Nutr Sci Vitaminol (Tokyo); 2010; 56(5):326-30. PubMed ID: 21228504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.
    Seuter S; Pehkonen P; Heikkinen S; Carlberg C
    Biochim Biophys Acta; 2013 Dec; 1829(12):1266-75. PubMed ID: 24185200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of VDR-mediated transcription by phosphorylation: correlation with increased interaction between the VDR and DRIP205, a subunit of the VDR-interacting protein coactivator complex.
    Barletta F; Freedman LP; Christakos S
    Mol Endocrinol; 2002 Feb; 16(2):301-14. PubMed ID: 11818502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.