BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 28427194)

  • 1. Alternative RNA splicing of the MEAF6 gene facilitates neuroendocrine prostate cancer progression.
    Lee AR; Li Y; Xie N; Gleave ME; Cox ME; Collins CC; Dong X
    Oncotarget; 2017 Apr; 8(17):27966-27975. PubMed ID: 28427194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SRRM4 Drives Neuroendocrine Transdifferentiation of Prostate Adenocarcinoma Under Androgen Receptor Pathway Inhibition.
    Li Y; Donmez N; Sahinalp C; Xie N; Wang Y; Xue H; Mo F; Beltran H; Gleave M; Wang Y; Collins C; Dong X
    Eur Urol; 2017 Jan; 71(1):68-78. PubMed ID: 27180064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative splicing of LSD1+8a in neuroendocrine prostate cancer is mediated by SRRM4.
    Coleman DJ; Sampson DA; Sehrawat A; Kumaraswamy A; Sun D; Wang Y; Schwartzman J; Urrutia J; Lee AR; Coleman IM; Nelson PS; Dong X; Morrissey C; Corey E; Xia Z; Yates JA; Alumkal JJ
    Neoplasia; 2020 Jun; 22(6):253-262. PubMed ID: 32403054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative RNA splicing of the GIT1 gene is associated with neuroendocrine prostate cancer.
    Lee AR; Gan Y; Xie N; Ramnarine VR; Lovnicki JM; Dong X
    Cancer Sci; 2019 Jan; 110(1):245-255. PubMed ID: 30417466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network.
    Lee AR; Gan Y; Tang Y; Dong X
    EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Roles of Alternative RNA Splicing of the Bif-1 Gene by SRRM4 During the Development of Treatment-induced Neuroendocrine Prostate Cancer.
    Gan Y; Li Y; Long Z; Lee AR; Xie N; Lovnicki JM; Tang Y; Chen X; Huang J; Dong X
    EBioMedicine; 2018 May; 31():267-275. PubMed ID: 29759485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LIN28B promotes the development of neuroendocrine prostate cancer.
    Lovnicki J; Gan Y; Feng T; Li Y; Xie N; Ho CH; Lee AR; Chen X; Nappi L; Han B; Fazli L; Huang J; Gleave ME; Dong X
    J Clin Invest; 2020 Oct; 130(10):5338-5348. PubMed ID: 32634132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ONECUT2 is a driver of neuroendocrine prostate cancer.
    Guo H; Ci X; Ahmed M; Hua JT; Soares F; Lin D; Puca L; Vosoughi A; Xue H; Li E; Su P; Chen S; Nguyen T; Liang Y; Zhang Y; Xu X; Xu J; Sheahan AV; Ba-Alawi W; Zhang S; Mahamud O; Vellanki RN; Gleave M; Bristow RG; Haibe-Kains B; Poirier JT; Rudin CM; Tsao MS; Wouters BG; Fazli L; Feng FY; Ellis L; van der Kwast T; Berlin A; Koritzinsky M; Boutros PC; Zoubeidi A; Beltran H; Wang Y; He HH
    Nat Commun; 2019 Jan; 10(1):278. PubMed ID: 30655535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOXA1 inhibits prostate cancer neuroendocrine differentiation.
    Kim J; Jin H; Zhao JC; Yang YA; Li Y; Yang X; Dong X; Yu J
    Oncogene; 2017 Jul; 36(28):4072-4080. PubMed ID: 28319070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications.
    Ramnarine VR; Alshalalfa M; Mo F; Nabavi N; Erho N; Takhar M; Shukin R; Brahmbhatt S; Gawronski A; Kobelev M; Nouri M; Lin D; Tsai H; Lotan TL; Karnes RJ; Rubin MA; Zoubeidi A; Gleave ME; Sahinalp C; Wyatt AW; Volik SV; Beltran H; Davicioni E; Wang Y; Collins CC
    Gigascience; 2018 Jun; 7(6):. PubMed ID: 29757368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SRRM4 gene expression correlates with neuroendocrine prostate cancer.
    Li Y; Zhang Q; Lovnicki J; Chen R; Fazli L; Wang Y; Gleave M; Huang J; Dong X
    Prostate; 2019 Jan; 79(1):96-104. PubMed ID: 30155992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer.
    Li H; Wang L; Li Z; Geng X; Li M; Tang Q; Wu C; Lu Z
    Lab Invest; 2020 Apr; 100(4):570-582. PubMed ID: 31772313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression signatures of neuroendocrine prostate cancer and primary small cell prostatic carcinoma.
    Tsai HK; Lehrer J; Alshalalfa M; Erho N; Davicioni E; Lotan TL
    BMC Cancer; 2017 Nov; 17(1):759. PubMed ID: 29132337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-Myc Induces an EZH2-Mediated Transcriptional Program Driving Neuroendocrine Prostate Cancer.
    Dardenne E; Beltran H; Benelli M; Gayvert K; Berger A; Puca L; Cyrta J; Sboner A; Noorzad Z; MacDonald T; Cheung C; Yuen KS; Gao D; Chen Y; Eilers M; Mosquera JM; Robinson BD; Elemento O; Rubin MA; Demichelis F; Rickman DS
    Cancer Cell; 2016 Oct; 30(4):563-577. PubMed ID: 27728805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer.
    Gururajan M; Cavassani KA; Sievert M; Duan P; Lichterman J; Huang JM; Smith B; You S; Nandana S; Chu GC; Mink S; Josson S; Liu C; Morello M; Jones LW; Kim J; Freeman MR; Bhowmick N; Zhau HE; Chung LW; Posadas EM
    Oncotarget; 2015 Dec; 6(42):44072-83. PubMed ID: 26624980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic deletion of osteopontin in TRAMP mice skews prostate carcinogenesis from adenocarcinoma to aggressive human-like neuroendocrine cancers.
    Mauri G; Jachetti E; Comuzzi B; Dugo M; Arioli I; Miotti S; Sangaletti S; Di Carlo E; Tripodo C; Colombo MP
    Oncotarget; 2016 Jan; 7(4):3905-20. PubMed ID: 26700622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets.
    Beltran H; Rickman DS; Park K; Chae SS; Sboner A; MacDonald TY; Wang Y; Sheikh KL; Terry S; Tagawa ST; Dhir R; Nelson JB; de la Taille A; Allory Y; Gerstein MB; Perner S; Pienta KJ; Chinnaiyan AM; Wang Y; Collins CC; Gleave ME; Demichelis F; Nanus DM; Rubin MA
    Cancer Discov; 2011 Nov; 1(6):487-95. PubMed ID: 22389870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
    Baca SC; Takeda DY; Seo JH; Hwang J; Ku SY; Arafeh R; Arnoff T; Agarwal S; Bell C; O'Connor E; Qiu X; Alaiwi SA; Corona RI; Fonseca MAS; Giambartolomei C; Cejas P; Lim K; He M; Sheahan A; Nassar A; Berchuck JE; Brown L; Nguyen HM; Coleman IM; Kaipainen A; De Sarkar N; Nelson PS; Morrissey C; Korthauer K; Pomerantz MM; Ellis L; Pasaniuc B; Lawrenson K; Kelly K; Zoubeidi A; Hahn WC; Beltran H; Long HW; Brown M; Corey E; Freedman ML
    Nat Commun; 2021 Mar; 12(1):1979. PubMed ID: 33785741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular events in neuroendocrine prostate cancer development.
    Wang Y; Wang Y; Ci X; Choi SYC; Crea F; Lin D; Wang Y
    Nat Rev Urol; 2021 Oct; 18(10):581-596. PubMed ID: 34290447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.