These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28427317)

  • 21. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone.
    Levrero-Florencio F; Pankaj P
    Front Physiol; 2018; 9():545. PubMed ID: 29867581
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanical stimuli of trabecular bone in osteoporosis: A numerical simulation by finite element analysis of microarchitecture.
    Sandino C; McErlain DD; Schipilow J; Boyd SK
    J Mech Behav Biomed Mater; 2017 Feb; 66():19-27. PubMed ID: 27829192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new constitutive model for simulation of softening, plateau, and densification phenomena for trabecular bone under compression.
    Lee CS; Lee JM; Youn B; Kim HS; Shin JK; Goh TS; Lee JS
    J Mech Behav Biomed Mater; 2017 Jan; 65():213-223. PubMed ID: 27592290
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The importance of intrinsic damage properties to bone fragility: a finite element study.
    Hardisty MR; Zauel R; Stover SM; Fyhrie DP
    J Biomech Eng; 2013 Jan; 135(1):011004. PubMed ID: 23363215
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indirect determination of trabecular bone effective tissue failure properties using micro-finite element simulations.
    Verhulp E; van Rietbergen B; Müller R; Huiskes R
    J Biomech; 2008; 41(7):1479-85. PubMed ID: 18423473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental and finite element analysis of the mouse caudal vertebrae loading model: prediction of cortical and trabecular bone adaptation.
    Webster D; Wirth A; van Lenthe GH; Müller R
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):221-30. PubMed ID: 21472383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Virtual trabecular bone models and their mechanical response.
    Donaldson FE; Pankaj P; Law AH; Simpson AH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1185-95. PubMed ID: 19143413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone.
    Sanyal A; Scheffelin J; Keaveny TM
    J Biomech Eng; 2015 Jan; 137(1):0110091-01100910. PubMed ID: 25401413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Failure modelling of trabecular bone using a non-linear combined damage and fracture voxel finite element approach.
    Harrison NM; McDonnell P; Mullins L; Wilson N; O'Mahoney D; McHugh PE
    Biomech Model Mechanobiol; 2013 Apr; 12(2):225-41. PubMed ID: 22527367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression.
    Metzger TA; Niebur GL
    J Biomech; 2016 Oct; 49(14):3596-3601. PubMed ID: 27660172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains.
    Morgan EF; Bayraktar HH; Yeh OC; Majumdar S; Burghardt A; Keaveny TM
    J Biomech; 2004 Sep; 37(9):1413-20. PubMed ID: 15275849
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modeling of dynamic fracture and damage in two-dimensional trabecular bone microstructures using the cohesive finite element method.
    Tomar V
    J Biomech Eng; 2008 Apr; 130(2):021021. PubMed ID: 18412508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the yield of the proximal femur using high-order finite-element analysis with inhomogeneous orthotropic material properties.
    Yosibash Z; Tal D; Trabelsi N
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2707-23. PubMed ID: 20439270
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite element dependence of stress evaluation for human trabecular bone.
    Depalle B; Chapurlat R; Walter-Le-Berre H; Bou-Saïd B; Follet H
    J Mech Behav Biomed Mater; 2013 Feb; 18():200-12. PubMed ID: 23246384
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calibration of a constitutive model for the post-yield behaviour of cortical bone.
    Mullins LP; Bruzzi MS; McHugh PE
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):460-70. PubMed ID: 19627852
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence.
    Kelly N; Harrison NM; McDonnell P; McGarry JP
    Biomech Model Mechanobiol; 2013 Aug; 12(4):685-703. PubMed ID: 22983738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of damage to trabecular bone of the osteoporotic human acetabulum at small strains using nonlinear micro-finite element analyses.
    Ding H; Zhu ZA; Dai KR
    Chin Med J (Engl); 2009 Sep; 122(17):2041-7. PubMed ID: 19781393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiphysics of bone remodeling: A 2D mesoscale activation simulation.
    Spingarn C; Wagner D; Rémond Y; George D
    Biomed Mater Eng; 2017; 28(s1):S153-S158. PubMed ID: 28372290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Damage in trabecular bone at small strains.
    Morgan EF; Yeh OC; Keaveny TM
    Eur J Morphol; 2005; 42(1-2):13-21. PubMed ID: 16123020
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.