These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 28427320)

  • 1. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices.
    Petrini L; Bertini A; Berti F; Pennati G; Migliavacca F
    Proc Inst Mech Eng H; 2017 May; 231(5):391-404. PubMed ID: 28427320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Safety performance of self-expandable NiTi alloy stent].
    Li Z; Yan W; Feng H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Apr; 37(2):334-339. PubMed ID: 32329287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue behaviour of Nitinol peripheral stents: the role of plaque shape studied with computational structural analyses.
    Dordoni E; Meoli A; Wu W; Dubini G; Migliavacca F; Pennati G; Petrini L
    Med Eng Phys; 2014 Jul; 36(7):842-9. PubMed ID: 24721457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the role of SMA modeling in simulating NiTinol self-expanding stenting surgeries to assess the performance characteristics of mechanical and thermal activation schemes.
    Saleeb AF; Dhakal B; Owusu-Danquah JS
    J Mech Behav Biomed Mater; 2015 Sep; 49():43-60. PubMed ID: 25988791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational studies of shape memory alloy behavior in biomedical applications.
    Petrini L; Migliavacca F; Massarotti P; Schievano S; Dubini G; Auricchio F
    J Biomech Eng; 2005 Aug; 127(4):716-25. PubMed ID: 16121543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of NiTi self-expandable heart valve stent.
    Salemizadeh Parizi F; Mehrabi R; Karamooz-Ravari MR
    Proc Inst Mech Eng H; 2019 Oct; 233(10):1042-1050. PubMed ID: 31354047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of nickel-titanium super-elastic material properties on the mechanical performance of self-expandable transcatheter aortic valves.
    Carbonaro D; Zambon S; Corti A; Gallo D; Morbiducci U; Audenino AL; Chiastra C
    J Mech Behav Biomed Mater; 2023 Feb; 138():105623. PubMed ID: 36535095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Computational Approach for the Prediction of Fatigue Behaviour in Peripheral Stents: Application to a Clinical Case.
    Petrini L; Trotta A; Dordoni E; Migliavacca F; Dubini G; Lawford PV; Gosai JN; Ryan DM; Testi D; Pennati G
    Ann Biomed Eng; 2016 Feb; 44(2):536-47. PubMed ID: 26433586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of severe grain refinement on the damage tolerance of a superelastic NiTi shape memory alloy.
    Leitner T; Sabirov I; Pippan R; Hohenwarter A
    J Mech Behav Biomed Mater; 2017 Jul; 71():337-348. PubMed ID: 28399494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative analysis of torsional and bending stresses in two mathematical models of nickel-titanium rotary instruments: ProTaper versus ProFile.
    Berutti E; Chiandussi G; Gaviglio I; Ibba A
    J Endod; 2003 Jan; 29(1):15-9. PubMed ID: 12540212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Thermoelastic analysis of nickel-titanium endodontic files].
    Rapisarda E; Tripi TR; Bonaccorso A
    Minerva Stomatol; 2000 Mar; 49(3):93-9. PubMed ID: 20047207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A study of load cycling in a NiTi shape memory alloy with pseudoelastic behaviour used in dental prosthetic fixators.
    Sabrià J; Cortada M; Giner L; Gil FJ; Fernández E; Manero JM; Planell JA
    Biomed Mater Eng; 1996; 6(3):153-7. PubMed ID: 8922260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the experimental testing of fine Nitinol wires for medical devices.
    Henderson E; Nash DH; Dempster WM
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):261-8. PubMed ID: 21316613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotary-bending fatigue characteristics of medical-grade Nitinol wire.
    Pelton AR; Fino-Decker J; Vien L; Bonsignore C; Saffari P; Launey M; Mitchell MR
    J Mech Behav Biomed Mater; 2013 Nov; 27():19-32. PubMed ID: 23838356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination effect of two different NiTi stents on the vessel wall and studying their flexibility using finite element method.
    Salemizadehparizi F; Mehrabi R
    Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1520-1530. PubMed ID: 34967243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis.
    Santos Lde A; Bahia MG; de Las Casas EB; Buono VT
    J Endod; 2013 Nov; 39(11):1444-7. PubMed ID: 24139271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.