BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 28427411)

  • 1. Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.
    Chuang BI; Hsu JH; Kuo LC; Jou IM; Su FC; Sun YN
    Biomed Eng Online; 2017 Apr; 16(1):47. PubMed ID: 28427411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and validation of ultrasound speckle tracking to quantify tendon displacement.
    Korstanje JW; Selles RW; Stam HJ; Hovius SE; Bosch JG
    J Biomech; 2010 May; 43(7):1373-9. PubMed ID: 20152983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation.
    Lai TY; Chen HI; Shih CC; Kuo LC; Hsu HY; Huang CC
    Med Phys; 2016 Jan; 43(1):148. PubMed ID: 26745907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of optical flow to estimate continuous changes in muscle thickness from ultrasound image sequences.
    Li Q; Ni D; Yi W; Chen S; Wang T; Chen X
    Ultrasound Med Biol; 2013 Nov; 39(11):2194-201. PubMed ID: 23969163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer vision elastography: speckle adaptive motion estimation for elastography using ultrasound sequences.
    Revell J; Mirmehdi M; McNally D
    IEEE Trans Med Imaging; 2005 Jun; 24(6):755-66. PubMed ID: 15957599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of a Lucas-Kanade-Based Template Tracking Algorithm to Examine In Vivo Tendon Excursion during Voluntary Contraction Using Ultrasonography.
    Karamanidis K; Travlou A; Krauss P; Jaekel U
    Ultrasound Med Biol; 2016 Jul; 42(7):1689-700. PubMed ID: 27117630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo estimation of flexor digitorum superficialis tendon displacement with speckle tracking on 2-D ultrasound images using Laplacian, Gaussian and Rayleigh techniques.
    Stegman KJ; Djurickovic S; Dechev N
    Ultrasound Med Biol; 2014 Mar; 40(3):568-82. PubMed ID: 24342915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle Tracking of Tendon Displacement in the Carpal Tunnel: Improved Quantification Using Singular Value Decomposition.
    Bandaru RS; Evers S; Selles RW; Thoreson AR; Amadio PC; Hovius SE; Bosch JG
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):817-824. PubMed ID: 29993671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An affine transformation invariance approach to cell tracking.
    Cui J; Ray N; Acton ST; Lin Z
    Comput Med Imaging Graph; 2008 Oct; 32(7):554-65. PubMed ID: 18667292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low dimensional optimization for in vivo real-time porcine liver motion estimation using ultrasound imaging.
    Fehrenbach J; Masmoudi M; Melodelima D
    Ultrasonics; 2010 Jan; 50(1):44-51. PubMed ID: 19683777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of an optimal image frame interval for frame-to-frame ultrasound image motion tracking.
    Ha JS; Walker WF; Hossack JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):386-96. PubMed ID: 15857047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carpal tunnel syndrome diagnosis by a self-normalization process and ultrasound compound imaging.
    Liao YY; Wu CC; Kuo TT; Chen JP; Hsu YW; Yeh CK
    Med Phys; 2012 Dec; 39(12):7402-11. PubMed ID: 23231290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrial septal defect tracking in 3D cardiac ultrasound.
    Linguraru MG; Vasilyev NV; del Nido PJ; Howe RD
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):596-603. PubMed ID: 17354939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendinopathy discrimination by use of spatial frequency parameters in ultrasound B-mode images.
    Bashford GR; Tomsen N; Arya S; Burnfield JM; Kulig K
    IEEE Trans Med Imaging; 2008 May; 27(5):608-15. PubMed ID: 18450534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Doppler ultrasound-based measurement of tendon velocity and displacement for application toward detecting user-intended motion.
    Stegman KJ; Park EJ; Dechev N
    Proc Inst Mech Eng H; 2012 Jul; 226(7):536-47. PubMed ID: 22913101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional motion measurements using feature tracking.
    Kuo J; von Ramm OT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Apr; 55(4):800-10. PubMed ID: 18467224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rotational motion in sensorless freehand three-dimensional ultrasound.
    Housden RJ; Gee AH; Prager RW; Treece GM
    Ultrasonics; 2008 Sep; 48(5):412-22. PubMed ID: 18374383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pixel-level robust digital image correlation.
    Cofaru C; Philips W; Van Paepegem W
    Opt Express; 2013 Dec; 21(24):29979-99. PubMed ID: 24514549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An autotuning respiration compensation system based on ultrasound image tracking.
    Kuo CC; Chuang HC; Teng KT; Hsu HY; Tien DC; Wu CJ; Jeng SC; Chiou JF
    J Xray Sci Technol; 2016 Nov; 24(6):875-892. PubMed ID: 27612051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.