These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28427531)

  • 1. Improvement of Soybean Products Through the Response Mechanism Analysis Using Proteomic Technique.
    Wang X; Komatsu S
    Adv Food Nutr Res; 2017; 82():117-148. PubMed ID: 28427531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic approaches to uncover the flooding and drought stress response mechanisms in soybean.
    Wang X; Komatsu S
    J Proteomics; 2018 Feb; 172():201-215. PubMed ID: 29133124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.
    Wang X; Komatsu S
    J Proteomics; 2016 Jun; 143():45-56. PubMed ID: 26808589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgenic soybeans and soybean protein analysis: an overview.
    Natarajan S; Luthria D; Bae H; Lakshman D; Mitra A
    J Agric Food Chem; 2013 Dec; 61(48):11736-43. PubMed ID: 24099420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress.
    Fercha A; Capriotti AL; Caruso G; Cavaliere C; Stampachiacchiere S; Zenezini Chiozzi R; Laganà A
    Proteomics; 2016 May; 16(10):1537-46. PubMed ID: 26969838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteomic and physiological analyses reveal the protective effect of exogenous calcium on the germinating soybean response to salt stress.
    Yin Y; Yang R; Han Y; Gu Z
    J Proteomics; 2015 Jan; 113():110-26. PubMed ID: 25284050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of gel-based and gel-free proteomic data for functional analysis of proteins through Soybean Proteome Database.
    Komatsu S; Wang X; Yin X; Nanjo Y; Ohyanagi H; Sakata K
    J Proteomics; 2017 Jun; 163():52-66. PubMed ID: 28499913
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review: Proteomic Techniques for the Development of Flood-Tolerant Soybean.
    Wang X; Komatsu S
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33053653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent update on methodologies for extraction and analysis of soybean seed proteins.
    Luthria DL; Maria John KM; Marupaka R; Natarajan S
    J Sci Food Agric; 2018 Dec; 98(15):5572-5580. PubMed ID: 29971799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights.
    Lee SJ; Kim JJ; Moon HI; Ahn JK; Chun SC; Jung WS; Lee OK; Chung IM
    J Agric Food Chem; 2008 Apr; 56(8):2751-8. PubMed ID: 18376845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress.
    Yin X; Komatsu S
    J Proteomics; 2017 Oct; 169():225-232. PubMed ID: 28137666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic insights into synthesis of isoflavonoids in soybean seeds.
    Dastmalchi M; Dhaubhadel S
    Proteomics; 2015 May; 15(10):1646-57. PubMed ID: 25757747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of soybeans with low P34 allergen protein concentration for reduced allergenicity of soy foods.
    Watanabe D; Adányi N; Takács K; Maczó A; Nagy A; Gelencsér É; Pachner M; Lauter K; Baumgartner S; Vollmann J
    J Sci Food Agric; 2017 Feb; 97(3):1010-1017. PubMed ID: 27247268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative transcriptome and proteomics analysis reveals the positive effect of supplementary Ca(2+) on soybean sprout yield and nutritional qualities.
    Wang X; Yang R; Zhou Y; Gu Z
    J Proteomics; 2016 Jun; 143():161-172. PubMed ID: 27108549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated Proteomics and Metabolomics Analysis Highlights Correlative Metabolite-Protein Networks in Soybean Seeds Subjected to Warm-Water Soaking.
    Min CW; Hyeon H; Gupta R; Park J; Cheon YE; Lee GH; Jang JW; Ryu HW; Lee BW; Park SU; Kim Y; Kim JK; Kim ST
    J Agric Food Chem; 2020 Jul; 68(30):8057-8067. PubMed ID: 32609497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic Techniques and Management of Flooding Tolerance in Soybean.
    Komatsu S; Tougou M; Nanjo Y
    J Proteome Res; 2015 Sep; 14(9):3768-78. PubMed ID: 26234743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive analysis of endoplasmic reticulum-enriched fraction in root tips of soybean under flooding stress using proteomics techniques.
    Komatsu S; Kuji R; Nanjo Y; Hiraga S; Furukawa K
    J Proteomics; 2012 Dec; 77():531-60. PubMed ID: 23041469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Omics' techniques for identifying flooding-response mechanisms in soybean.
    Komatsu S; Shirasaka N; Sakata K
    J Proteomics; 2013 Nov; 93():169-78. PubMed ID: 23313220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soybean proteomics for unraveling abiotic stress response mechanism.
    Hossain Z; Khatoon A; Komatsu S
    J Proteome Res; 2013 Nov; 12(11):4670-84. PubMed ID: 24016329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of the flooding tolerance mechanism in mutant soybean.
    Komatsu S; Nanjo Y; Nishimura M
    J Proteomics; 2013 Feb; 79():231-50. PubMed ID: 23313221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.