These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28427819)

  • 1. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Theor Biol; 2017 Jun; 422():59-71. PubMed ID: 28427819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory.
    Sahmani S; Aghdam MM
    J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlocal shear deformable shell model for postbuckling of axially compressed microtubules embedded in an elastic medium.
    Shen HS
    Biomech Model Mechanobiol; 2010 Jun; 9(3):345-57. PubMed ID: 19941152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules.
    Sahmani S; Aghdam MM
    Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Buckling and postbuckling of radially loaded microtubules by nonlocal shear deformable shell model.
    Shen HS
    J Theor Biol; 2010 May; 264(2):386-94. PubMed ID: 20167222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient size-dependent shear deformable shell model and molecular dynamics simulation for axial instability analysis of silicon nanoshells.
    Sahmani S; Aghdam MM; Bahrami M
    J Mol Graph Model; 2017 Oct; 77():263-279. PubMed ID: 28903086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory.
    Beni YT; Zeverdejani MK; Mehralian F
    Math Biosci; 2017 Oct; 292():18-29. PubMed ID: 28709975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small scale effects on the mechanical behaviors of protein microtubules based on the nonlocal elasticity theory.
    Gao Y; Lei FM
    Biochem Biophys Res Commun; 2009 Sep; 387(3):467-71. PubMed ID: 19615341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development an efficient calibrated nonlocal plate model for nonlinear axial instability of zirconia nanosheets using molecular dynamics simulation.
    Sahmani S; Fattahi AM
    J Mol Graph Model; 2017 Aug; 75():20-31. PubMed ID: 28550738
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational principles for buckling of microtubules modeled as nonlocal orthotropic shells.
    Adali S
    Comput Math Methods Med; 2014; 2014():591532. PubMed ID: 25214886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model.
    Sadeghian M; Palevicius A; Janusas G
    Micromachines (Basel); 2023 Sep; 14(9):. PubMed ID: 37763953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanics model of microtubule buckling in living cells.
    Li T
    J Biomech; 2008; 41(8):1722-9. PubMed ID: 18433758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory.
    Zhang X; Shamsodin M; Wang H; NoormohammadiArani O; Khan AM; Habibi M; Al-Furjan MSH
    J Biomol Struct Dyn; 2021 Jun; 39(9):3128-3143. PubMed ID: 32338161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate.
    Sadeghian M; Palevicius A; Janusas G
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonlocal strain gradient shell model with the surface effect for buckling analysis of a magneto-electro-thermo-elastic cylindrical nanoshell subjected to axial load.
    Gui Y; Li Z
    Phys Chem Chem Phys; 2023 Sep; 25(36):24838-24852. PubMed ID: 37672090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical study of the effect of shear deformable shell model, elastic foundation and size dependency on the vibration of protein microtubule.
    Baninajjaryan A; Tadi Beni Y
    J Theor Biol; 2015 Oct; 382():111-21. PubMed ID: 26159811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A higher-order mathematical modeling for dynamic behavior of protein microtubule shell structures including shear deformation and small-scale effects.
    Daneshmand F; Farokhi H; Amabili M
    Math Biosci; 2014 Jun; 252():67-82. PubMed ID: 24657874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory.
    Najaafi N; Jamali M; Habibi M; Sadeghi S; Jung DW; Nabipour N
    J Biomol Struct Dyn; 2021 Apr; 39(7):2543-2554. PubMed ID: 32242490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent dynamic stability analysis of the cantilevered curved microtubule-associated proteins (MAPs).
    Zhang P; Ge Z; Safarpour M
    J Biomol Struct Dyn; 2021 May; 39(8):2932-2944. PubMed ID: 32312216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orthotropic elastic shell model for buckling of microtubules.
    Wang CY; Ru CQ; Mioduchowski A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):052901. PubMed ID: 17279958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.