These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 28427825)
1. Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Auesukaree C J Biosci Bioeng; 2017 Aug; 124(2):133-142. PubMed ID: 28427825 [TBL] [Abstract][Full Text] [Related]
2. A review of yeast: High cell-density culture, molecular mechanisms of stress response and tolerance during fermentation. Shen D; He X; Weng P; Liu Y; Wu Z FEMS Yeast Res; 2022 Nov; 22(1):. PubMed ID: 36288242 [TBL] [Abstract][Full Text] [Related]
3. Coordination of the Cell Wall Integrity and High-Osmolarity Glycerol Pathways in Response to Ethanol Stress in Saccharomyces cerevisiae. Udom N; Chansongkrow P; Charoensawan V; Auesukaree C Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31101611 [TBL] [Abstract][Full Text] [Related]
4. Reprogramming of the Ethanol Stress Response in Saccharomyces cerevisiae by the Transcription Factor Znf1 and Its Effect on the Biosynthesis of Glycerol and Ethanol. Samakkarn W; Ratanakhanokchai K; Soontorngun N Appl Environ Microbiol; 2021 Jul; 87(16):e0058821. PubMed ID: 34105981 [TBL] [Abstract][Full Text] [Related]
5. Increased ethanol production from glycerol by Saccharomyces cerevisiae strains with enhanced stress tolerance from the overexpression of SAGA complex components. Yu KO; Jung J; Ramzi AB; Choe SH; Kim SW; Park C; Han SO Enzyme Microb Technol; 2012 Sep; 51(4):237-43. PubMed ID: 22883559 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of ethanol production in very high gravity fermentation by reducing fermentation-induced oxidative stress in Saccharomyces cerevisiae. Burphan T; Tatip S; Limcharoensuk T; Kangboonruang K; Boonchird C; Auesukaree C Sci Rep; 2018 Aug; 8(1):13069. PubMed ID: 30166576 [TBL] [Abstract][Full Text] [Related]
7. Vacuolar H+-ATPase Protects Saccharomyces cerevisiae Cells against Ethanol-Induced Oxidative and Cell Wall Stresses. Charoenbhakdi S; Dokpikul T; Burphan T; Techo T; Auesukaree C Appl Environ Microbiol; 2016 May; 82(10):3121-3130. PubMed ID: 26994074 [TBL] [Abstract][Full Text] [Related]
8. Relationship of trehalose accumulation with ethanol fermentation in industrial Saccharomyces cerevisiae yeast strains. Wang PM; Zheng DQ; Chi XQ; Li O; Qian CD; Liu TZ; Zhang XY; Du FG; Sun PY; Qu AM; Wu XC Bioresour Technol; 2014; 152():371-6. PubMed ID: 24316480 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae strains from traditional fermentations of Brazilian cachaça: trehalose metabolism, heat and ethanol resistance. Vianna CR; Silva CL; Neves MJ; Rosa CA Antonie Van Leeuwenhoek; 2008; 93(1-2):205-17. PubMed ID: 17701283 [TBL] [Abstract][Full Text] [Related]
10. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis. Li R; Xiong G; Yuan S; Wu Z; Miao Y; Weng P World J Microbiol Biotechnol; 2017 Nov; 33(11):206. PubMed ID: 29101531 [TBL] [Abstract][Full Text] [Related]
11. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation. Kitichantaropas Y; Boonchird C; Sugiyama M; Kaneko Y; Harashima S; Auesukaree C AMB Express; 2016 Dec; 6(1):107. PubMed ID: 27826949 [TBL] [Abstract][Full Text] [Related]
12. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae. Kim IS; Kim YS; Yoon HS Appl Microbiol Biotechnol; 2013 Apr; 97(8):3519-33. PubMed ID: 23053072 [TBL] [Abstract][Full Text] [Related]
13. Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Kaino T; Takagi H Appl Microbiol Biotechnol; 2008 May; 79(2):273-83. PubMed ID: 18351334 [TBL] [Abstract][Full Text] [Related]
14. Construction of Saccharomyces cerevisiae strains with enhanced ethanol tolerance by mutagenesis of the TATA-binding protein gene and identification of novel genes associated with ethanol tolerance. Yang J; Bae JY; Lee YM; Kwon H; Moon HY; Kang HA; Yee SB; Kim W; Choi W Biotechnol Bioeng; 2011 Aug; 108(8):1776-87. PubMed ID: 21437883 [TBL] [Abstract][Full Text] [Related]
15. Changes of trehalose content and expression of relative genes during the bioethanol fermentation by Saccharomyces cerevisiae. Yi C; Wang F; Dong S; Li H Can J Microbiol; 2016 Oct; 62(10):827-835. PubMed ID: 27510429 [TBL] [Abstract][Full Text] [Related]
16. Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae. Kim NR; Yang J; Kwon H; An J; Choi W; Kim W Appl Microbiol Biotechnol; 2013 Sep; 97(18):8227-38. PubMed ID: 23709042 [TBL] [Abstract][Full Text] [Related]
17. The induction of trehalose and glycerol in Saccharomyces cerevisiae in response to various stresses. Li L; Ye Y; Pan L; Zhu Y; Zheng S; Lin Y Biochem Biophys Res Commun; 2009 Oct; 387(4):778-83. PubMed ID: 19635452 [TBL] [Abstract][Full Text] [Related]
18. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Shima J; Takagi H Biotechnol Appl Biochem; 2009 May; 53(Pt 3):155-64. PubMed ID: 19476439 [TBL] [Abstract][Full Text] [Related]
19. Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Guo ZP; Zhang L; Ding ZY; Shi GY Metab Eng; 2011 Jan; 13(1):49-59. PubMed ID: 21126600 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Ma M; Liu ZL Appl Microbiol Biotechnol; 2010 Jul; 87(3):829-45. PubMed ID: 20464391 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]