BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

501 related articles for article (PubMed ID: 28428219)

  • 21. Apolipoprotein A-I protection against atherosclerosis is dependent on genetic background.
    Sontag TJ; Krishack PA; Lukens JR; Bhanvadia CV; Getz GS; Reardon CA
    Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):262-9. PubMed ID: 24334873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Liver ABCA1 deletion in LDLrKO mice does not impair macrophage reverse cholesterol transport or exacerbate atherogenesis.
    Bi X; Zhu X; Duong M; Boudyguina EY; Wilson MD; Gebre AK; Parks JS
    Arterioscler Thromb Vasc Biol; 2013 Oct; 33(10):2288-96. PubMed ID: 23814116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shotgun proteomic analysis reveals proteome alterations in HDL of patients with cholesteryl ester transfer protein deficiency.
    Okada T; Ohama T; Takafuji K; Kanno K; Matsuda H; Sairyo M; Zhu Y; Saga A; Kobayashi T; Masuda D; Koseki M; Nishida M; Sakata Y; Yamashita S
    J Clin Lipidol; 2019; 13(2):317-325. PubMed ID: 30745272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of antisense oligonucleotides against cholesteryl ester transfer protein on the development of atherosclerosis in cholesterol-fed rabbits.
    Sugano M; Makino N; Sawada S; Otsuka S; Watanabe M; Okamoto H; Kamada M; Mizushima A
    J Biol Chem; 1998 Feb; 273(9):5033-6. PubMed ID: 9478952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis.
    Trinder M; Wang Y; Madsen CM; Ponomarev T; Bohunek L; Daisely BA; Julia Kong H; Blauw LL; Nordestgaard BG; Tybjærg-Hansen A; Wurfel MM; Russell JA; Walley KR; Rensen PCN; Boyd JH; Brunham LR
    Circulation; 2021 Mar; 143(9):921-934. PubMed ID: 33228395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Advances on the research of the relationship between cholesteryl ester transfer protein and atherosclerosis].
    Huang ZY; Guo HW
    Wei Sheng Yan Jiu; 2005 Nov; 34(6):765-7. PubMed ID: 16535859
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of hepatic scavenger receptor-class B type I by RNA interference decreases atherosclerosis in rabbits.
    Demetz E; Tancevski I; Duwensee K; Stanzl U; Huber E; Heim C; Handle F; Theurl M; Schroll A; Tailleux A; Dietrich H; Patsch JR; Eller P; Ritsch A
    Atherosclerosis; 2012 Jun; 222(2):360-6. PubMed ID: 22494625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early inflammatory reactions in atherosclerosis are induced by proline-rich tyrosine kinase/reactive oxygen species-mediated release of tumor necrosis factor-alpha and subsequent activation of the p21Cip1/Ets-1/p300 system.
    Katsume A; Okigaki M; Matsui A; Che J; Adachi Y; Kishita E; Yamaguchi S; Ikeda K; Ueyama T; Matoba S; Yamada H; Matsubara H
    Arterioscler Thromb Vasc Biol; 2011 May; 31(5):1084-92. PubMed ID: 21372295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Niacin increases HDL by reducing hepatic expression and plasma levels of cholesteryl ester transfer protein in APOE*3Leiden.CETP mice.
    van der Hoorn JW; de Haan W; Berbée JF; Havekes LM; Jukema JW; Rensen PC; Princen HM
    Arterioscler Thromb Vasc Biol; 2008 Nov; 28(11):2016-22. PubMed ID: 18669886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human apolipoprotein C1 transgenesis reduces atherogenesis in hypercholesterolemic rabbits.
    Gautier T; Deckert V; Aires V; Le Guern N; Proukhnitzky L; Patoli D; Lemaire S; Maquart G; Bataille A; Xolin M; Magnani C; Masson D; Harscoët E; Da Silva B; Houdebine LM; Jolivet G; Lagrost L
    Atherosclerosis; 2021 Mar; 320():10-18. PubMed ID: 33497863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7.
    Lu R; Yuan T; Wang Y; Zhang T; Yuan Y; Wu D; Zhou M; He Z; Lu Y; Chen Y; Fan J; Liang J; Cheng Y
    EBioMedicine; 2018 Oct; 36():29-38. PubMed ID: 30243490
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LDL Receptor Regulates the Reverse Transport of Macrophage-Derived Unesterified Cholesterol via Concerted Action of the HDL-LDL Axis: Insight From Mouse Models.
    Cedó L; Metso J; Santos D; García-León A; Plana N; Sabate-Soler S; Rotllan N; Rivas-Urbina A; Méndez-Lara KA; Tondo M; Girona J; Julve J; Pallarès V; Benitez-Amaro A; Llorente-Cortes V; Pérez A; Gómez-Coronado D; Ruotsalainen AK; Levonen AL; Sanchez-Quesada JL; Masana L; Kovanen PT; Jauhiainen M; Lee-Rueckert M; Blanco-Vaca F; Escolà-Gil JC
    Circ Res; 2020 Aug; 127(6):778-792. PubMed ID: 32495699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A selective peroxisome proliferator-activated receptor δ agonist PYPEP suppresses atherosclerosis in association with improvement of the serum lipoprotein profiles in human apolipoprotein B100 and cholesteryl ester transfer protein double transgenic mice.
    Naya N; Fukao K; Nakamura A; Hamada T; Sugimoto M; Kojima M; Yoshimura N; Uwabe K; Imagawa K; Nomura K; Hara S; Nakano T; Iwasaki T; Shinosaki T; Hanasaki K
    Metabolism; 2016 Jan; 65(1):16-25. PubMed ID: 26683793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Worsening of diet-induced atherosclerosis in a new model of transgenic rabbit expressing the human plasma phospholipid transfer protein.
    Masson D; Deckert V; Gautier T; Klein A; Desrumaux C; Viglietta C; Pais de Barros JP; Le Guern N; Grober J; Labbé J; Ménétrier F; Ripoll PJ; Leroux-Coyau M; Jolivet G; Houdebine LM; Lagrost L
    Arterioscler Thromb Vasc Biol; 2011 Apr; 31(4):766-74. PubMed ID: 21252068
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition of CETP activity by torcetrapib reduces susceptibility to diet-induced atherosclerosis in New Zealand White rabbits.
    Morehouse LA; Sugarman ED; Bourassa PA; Sand TM; Zimetti F; Gao F; Rothblat GH; Milici AJ
    J Lipid Res; 2007 Jun; 48(6):1263-72. PubMed ID: 17325387
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholesteryl ester transfer protein (CETP), HDL capacity of receiving cholesterol and status of inflammatory cytokines in patients with severe heart failure.
    Martinelli AEM; Maranhão RC; Carvalho PO; Freitas FR; Silva BMO; Curiati MNC; Kalil Filho R; Pereira-Barretto AC
    Lipids Health Dis; 2018 Oct; 17(1):242. PubMed ID: 30342531
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cholesteryl ester transfer protein (CETP) inhibition beyond raising high-density lipoprotein cholesterol levels: pathways by which modulation of CETP activity may alter atherogenesis.
    Klerkx AH; El Harchaoui K; van der Steeg WA; Boekholdt SM; Stroes ES; Kastelein JJ; Kuivenhoven JA
    Arterioscler Thromb Vasc Biol; 2006 Apr; 26(4):706-15. PubMed ID: 16439711
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholesteryl ester transfer protein (CETP) deficiency and CETP inhibitors.
    Mabuchi H; Nohara A; Inazu A
    Mol Cells; 2014 Nov; 37(11):777-84. PubMed ID: 25410905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decreased cholesterol efflux capacity in patients with low cholesteryl ester transfer protein plasma levels.
    Scharnagl H; Heuschneider C; Sailer S; Kleber ME; März W; Ritsch A
    Eur J Clin Invest; 2014 Apr; 44(4):395-401. PubMed ID: 24467215
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probucol-Oxidized Products, Spiroquinone and Diphenoquinone, Promote Reverse Cholesterol Transport in Mice.
    Yakushiji E; Ayaori M; Nishida T; Shiotani K; Takiguchi S; Nakaya K; Uto-Kondo H; Ogura M; Sasaki M; Yogo M; Komatsu T; Lu R; Yokoyama S; Ikewaki K
    Arterioscler Thromb Vasc Biol; 2016 Apr; 36(4):591-7. PubMed ID: 26848156
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.