BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 28428329)

  • 1. Visualization of RNA structure models within the Integrative Genomics Viewer.
    Busan S; Weeks KM
    RNA; 2017 Jul; 23(7):1012-1018. PubMed ID: 28428329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of lncRNA and mRNA Structure Models Within the Integrative Genomics Viewer.
    Busan S; Weeks KM
    Methods Mol Biol; 2021; 2254():15-25. PubMed ID: 33326067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Silico Prediction of RNA Secondary Structure.
    Tahi F; Du T Tran V; Boucheham A
    Methods Mol Biol; 2017; 1543():145-168. PubMed ID: 28349425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical Viewer: a tool to upload and integrate linkage and association data as plots displayed within the Ensembl genome browser.
    Stenger JE; Xu H; Haynes C; Hauser ER; Pericak-Vance M; Goldschmidt-Clermont PJ; Vance JM
    BMC Bioinformatics; 2005 Apr; 6():95. PubMed ID: 15826305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA base-pairing complexity in living cells visualized by correlated chemical probing.
    Mustoe AM; Lama NN; Irving PS; Olson SW; Weeks KM
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24574-24582. PubMed ID: 31744869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Molecule Correlated Chemical Probing: A Revolution in RNA Structure Analysis.
    Mustoe AM; Weidmann CA; Weeks KM
    Acc Chem Res; 2023 Apr; 56(7):763-775. PubMed ID: 36917683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary Analyses of Base-Pairing Interactions in DNA and RNA Secondary Structures.
    Golden M; Murrell B; Martin D; Pybus OG; Hein J
    Mol Biol Evol; 2020 Feb; 37(2):576-592. PubMed ID: 31665393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CompAnnotate: a comparative approach to annotate base-pairing interactions in RNA 3D structures.
    Islam S; Ge P; Zhang S
    Nucleic Acids Res; 2017 Aug; 45(14):e136. PubMed ID: 28641399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational analysis of RNA structures with chemical probing data.
    Ge P; Zhang S
    Methods; 2015 Jun; 79-80():60-6. PubMed ID: 25687190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP) for direct, versatile and accurate RNA structure analysis.
    Smola MJ; Rice GM; Busan S; Siegfried NA; Weeks KM
    Nat Protoc; 2015 Nov; 10(11):1643-69. PubMed ID: 26426499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SHAPE-directed RNA secondary structure prediction.
    Low JT; Weeks KM
    Methods; 2010 Oct; 52(2):150-8. PubMed ID: 20554050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-Wide Approaches for RNA Structure Probing.
    Silverman IM; Berkowitz ND; Gosai SJ; Gregory BD
    Adv Exp Med Biol; 2016; 907():29-59. PubMed ID: 27256381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA secondary structure modeling at consistent high accuracy using differential SHAPE.
    Rice GM; Leonard CW; Weeks KM
    RNA; 2014 Jun; 20(6):846-54. PubMed ID: 24742934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration.
    Thorvaldsdóttir H; Robinson JT; Mesirov JP
    Brief Bioinform; 2013 Mar; 14(2):178-92. PubMed ID: 22517427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping RNA Structure In Vitro with SHAPE Chemistry and Next-Generation Sequencing (SHAPE-Seq).
    Watters KE; Lucks JB
    Methods Mol Biol; 2016; 1490():135-62. PubMed ID: 27665597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating molecular dynamics simulations with chemical probing experiments using SHAPE-FIT.
    Kirmizialtin S; Hennelly SP; Schug A; Onuchic JN; Sanbonmatsu KY
    Methods Enzymol; 2015; 553():215-34. PubMed ID: 25726467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct identification of base-paired RNA nucleotides by correlated chemical probing.
    Krokhotin A; Mustoe AM; Weeks KM; Dokholyan NV
    RNA; 2017 Jan; 23(1):6-13. PubMed ID: 27803152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partition function and base pairing probabilities for RNA-RNA interaction prediction.
    Huang FW; Qin J; Reidys CM; Stadler PF
    Bioinformatics; 2009 Oct; 25(20):2646-54. PubMed ID: 19671692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing-directed identification of novel structured RNAs.
    Vinogradova SV; Sutormin RA; Mironov AA; Soldatov RA
    RNA Biol; 2016; 13(2):232-42. PubMed ID: 26732206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.