These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 28428820)

  • 1. Regional water footprints of potential biofuel production in China.
    Xie X; Zhang T; Wang L; Huang Z
    Biotechnol Biofuels; 2017; 10():95. PubMed ID: 28428820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle water footprints of nonfood biomass fuels in China.
    Zhang T; Xie X; Huang Z
    Environ Sci Technol; 2014 Apr; 48(7):4137-44. PubMed ID: 24400620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental sustainability assessment of biodiesel production from Jatropha curcas L. seeds oil in Pakistan.
    Khanam T; Khalid F; Manzoor W; Rashedi A; Hadi R; Ullah F; Rehman F; Akhtar A; Babu NBK; Hussain M
    PLoS One; 2021; 16(11):e0258409. PubMed ID: 34793466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China.
    Fu H; Chen Y; Yang X; Di J; Xu M; Zhang B
    Sci Total Environ; 2019 Feb; 653():758-764. PubMed ID: 30759601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental impacts of Jatropha curcas biodiesel in India.
    Gmünder S; Singh R; Pfister S; Adheloya A; Zah R
    J Biomed Biotechnol; 2012; 2012():623070. PubMed ID: 22919274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways.
    Chiu YW; Wu M
    Environ Sci Technol; 2012 Aug; 46(16):9155-62. PubMed ID: 22816524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Economics of Biofuel Production: A Case of Sorghum and Pearl Millet in India.
    Reddy MG; Reddy BS
    Methods Mol Biol; 2021; 2290():287-316. PubMed ID: 34009597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water, Energy, and Carbon Footprints of Bioethanol from the U.S. and Brazil.
    Mekonnen MM; Romanelli TL; Ray C; Hoekstra AY; Liska AJ; Neale CMU
    Environ Sci Technol; 2018 Dec; 52(24):14508-14518. PubMed ID: 30428259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The water footprint of bioenergy.
    Gerbens-Leenes W; Hoekstra AY; van der Meer TH
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10219-23. PubMed ID: 19497862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of inter-annual variability of consumption, production, trade and climate on crop-related green and blue water footprints and inter-regional virtual water trade: A study for China (1978-2008).
    Zhuo L; Mekonnen MM; Hoekstra AY
    Water Res; 2016 May; 94():73-85. PubMed ID: 26938494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental and resource burdens associated with world biofuel production out to 2050: footprint components from carbon emissions and land use to waste arisings and water consumption.
    Hammond GP; Li B
    Glob Change Biol Bioenergy; 2016 Sep; 8(5):894-908. PubMed ID: 27610203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characteristics of the water footprint of rice production under different rainfall years in Jilin Province, China.
    Li H; Qin L; He H
    J Sci Food Agric; 2018 Jun; 98(8):3001-3013. PubMed ID: 29193107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial pattern characteristics of water footprint for maize production in Northeast China.
    Duan P; Qin L; Wang Y; He H
    J Sci Food Agric; 2016 Jan; 96(2):561-8. PubMed ID: 25654998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial-Temporal Footprints Assessment and Driving Mechanism of China Household Diet Based on CHNS.
    Long Y; Hu R; Yin T; Wang P; Liu J; Muhammad T; Chen X; Li Y
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.
    Sudhakar Johnson T; Eswaran N; Sujatha M
    Plant Cell Rep; 2011 Sep; 30(9):1573-91. PubMed ID: 21584678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crop water footprints and their driving mechanisms show regional differences.
    Fang H; Wu N; Adamowski J; Wu M; Cao X
    Sci Total Environ; 2023 Dec; 904():167549. PubMed ID: 37802358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regionalized Life-Cycle Water Impacts of Microalgal-Based Biofuels in the United States.
    Quiroz D; Greene JM; Quinn JC
    Environ Sci Technol; 2022 Nov; 56(22):16400-16409. PubMed ID: 36227213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generating a geospatial database of U.S. regional feedstock production for use in evaluating the environmental footprint of biofuels.
    Holder CT; Cleland JC; LeDuc SD; Andereck Z; Hogan C; Martin KM
    J Air Waste Manag Assoc; 2016 Apr; 66(4):356-65. PubMed ID: 26727486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth, reproductive phenology and yield responses of a potential biofuel plant, Jatropha curcas grown under projected 2050 levels of elevated CO2.
    Kumar S; Chaitanya BS; Ghatty S; Reddy AR
    Physiol Plant; 2014 Nov; 152(3):501-19. PubMed ID: 24655305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biofuels and biodiversity: principles for creating better policies for biofuel production.
    Groom MJ; Gray EM; Townsend PA
    Conserv Biol; 2008 Jun; 22(3):602-9. PubMed ID: 18261147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.