These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 28428870)
1. Gene expression profiling during the embryo-to-larva transition in the giant red sea urchin Gaitán-Espitia JD; Hofmann GE Ecol Evol; 2017 Apr; 7(8):2798-2811. PubMed ID: 28428870 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional profiles of early stage red sea urchins (Mesocentrotus franciscanus) reveal differential regulation of gene expression across development. Wong JM; Gaitán-Espitia JD; Hofmann GE Mar Genomics; 2019 Dec; 48():100692. PubMed ID: 31227413 [TBL] [Abstract][Full Text] [Related]
3. Gene expression patterns of red sea urchins (Mesocentrotus franciscanus) exposed to different combinations of temperature and pCO Wong JM; Hofmann GE BMC Genomics; 2021 Jan; 22(1):32. PubMed ID: 33413121 [TBL] [Abstract][Full Text] [Related]
4. Sequencing and analysis of the gastrula transcriptome of the brittle star Ophiocoma wendtii. Vaughn R; Garnhart N; Garey JR; Thomas WK; Livingston BT Evodevo; 2012 Sep; 3(1):19. PubMed ID: 22938175 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial genome architecture of the giant red sea urchin Mesocentrotus franciscanus (Strongylocentrotidae, Echinoida). Gaitán-Espitia JD; Hofmann GE Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):591-2. PubMed ID: 24724935 [TBL] [Abstract][Full Text] [Related]
6. Unique age-related transcriptional signature in the nervous system of the long-lived red sea urchin Mesocentrotus franciscanus. Polinski JM; Kron N; Smith DR; Bodnar AG Sci Rep; 2020 Jun; 10(1):9182. PubMed ID: 32514014 [TBL] [Abstract][Full Text] [Related]
7. Functional insights into the testis transcriptome of the edible sea urchin Loxechinus albus. Gaitán-Espitia JD; Sánchez R; Bruning P; Cárdenas L Sci Rep; 2016 Nov; 6():36516. PubMed ID: 27805042 [TBL] [Abstract][Full Text] [Related]
8. De novo transcriptome of the European brittle star Amphiura filiformis pluteus larvae. Delroisse J; Ortega-Martinez O; Dupont S; Mallefet J; Flammang P Mar Genomics; 2015 Oct; 23():109-21. PubMed ID: 26044617 [TBL] [Abstract][Full Text] [Related]
9. Quantitative developmental transcriptomes of the Mediterranean sea urchin Paracentrotus lividus. Gildor T; Malik A; Sher N; Avraham L; Ben-Tabou de-Leon S Mar Genomics; 2016 Feb; 25():89-94. PubMed ID: 26671332 [TBL] [Abstract][Full Text] [Related]
10. Development of the nervous system in the brittle star Amphipholis kochii. Hirokawa T; Komatsu M; Nakajima Y Dev Genes Evol; 2008 Jan; 218(1):15-21. PubMed ID: 18087717 [TBL] [Abstract][Full Text] [Related]
11. [3H]serotonin binding to blastula, gastrula, prism, and pluteus sea urchin embryo cells. Brown KM; Shaver JR Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(2):281-5. PubMed ID: 2572382 [TBL] [Abstract][Full Text] [Related]
12. Gene expression patterns regulating embryogenesis based on the integrated de novo transcriptome assembly of the Japanese flounder. Fu Y; Jia L; Shi Z; Zhang J; Li W Comp Biochem Physiol Part D Genomics Proteomics; 2017 Jun; 22():58-66. PubMed ID: 28199879 [TBL] [Abstract][Full Text] [Related]
13. Characterization of the transcriptome and gene expression of four different tissues in the ecologically relevant sea urchin Arbacia lixula using RNA-seq. Pérez-Portela R; Turon X; Riesgo A Mol Ecol Resour; 2016 May; 16(3):794-808. PubMed ID: 26650340 [TBL] [Abstract][Full Text] [Related]
14. Genomic signatures of exceptional longevity and negligible aging in the long-lived red sea urchin. Polinski JM; Castellano KR; Buckley KM; Bodnar AG Cell Rep; 2024 Apr; 43(4):114021. PubMed ID: 38564335 [TBL] [Abstract][Full Text] [Related]
15. A rapidly diverging EGF protein regulates species-specific signal transduction in early sea urchin development. Kamei N; Swanson WJ; Glabe CG Dev Biol; 2000 Sep; 225(2):267-76. PubMed ID: 10985849 [TBL] [Abstract][Full Text] [Related]
16. EchinoDB: an update to the web-based application for genomic and transcriptomic data on echinoderms. Mittal V; Reid RW; Machado DJ; Mashanov V; Janies DA BMC Genom Data; 2022 Oct; 23(1):75. PubMed ID: 36274129 [TBL] [Abstract][Full Text] [Related]
17. Multidisciplinary screening of toxicity induced by silica nanoparticles during sea urchin development. Gambardella C; Morgana S; Bari GD; Ramoino P; Bramini M; Diaspro A; Falugi C; Faimali M Chemosphere; 2015 Nov; 139():486-95. PubMed ID: 26291678 [TBL] [Abstract][Full Text] [Related]
18. Culturing echinoderm larvae through metamorphosis. Hodin J; Heyland A; Mercier A; Pernet B; Cohen DL; Hamel JF; Allen JD; McAlister JS; Byrne M; Cisternas P; George SB Methods Cell Biol; 2019; 150():125-169. PubMed ID: 30777174 [TBL] [Abstract][Full Text] [Related]
19. Expression Patterns of Atlantic Sturgeon ( Kaitetzidou E; Ludwig A; Gessner J; Sarropoulou E G3 (Bethesda); 2017 Feb; 7(2):533-542. PubMed ID: 27974440 [TBL] [Abstract][Full Text] [Related]
20. Spatial expression of a forkhead homologue in the sea urchin embryo. Harada Y; Akasaka K; Shimada H; Peterson KJ; Davidson EH; Satoh N Mech Dev; 1996 Dec; 60(2):163-73. PubMed ID: 9025069 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]