These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 28429185)

  • 61. Drug testing and characterization using human-on-chip (HoC) systems: some thoughts on the application of in vitro-in vivo correlation.
    Somayaji MR; Das D; Przekwas AJ
    Drug Discov Today; 2018 Sep; 23(9):1571-1573. PubMed ID: 29428643
    [No Abstract]   [Full Text] [Related]  

  • 62. Self-contained, low-cost Body-on-a-Chip systems for drug development.
    Wang YI; Oleaga C; Long CJ; Esch MB; McAleer CW; Miller PG; Hickman JJ; Shuler ML
    Exp Biol Med (Maywood); 2017 Nov; 242(17):1701-1713. PubMed ID: 29065797
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Microphysiological modeling of the reproductive tract: a fertile endeavor.
    Eddie SL; Kim JJ; Woodruff TK; Burdette JE
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1192-202. PubMed ID: 24737736
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Emerging Role of Organ-on-a-Chip Technologies in Quantitative Clinical Pharmacology Evaluation.
    Isoherranen N; Madabushi R; Huang SM
    Clin Transl Sci; 2019 Mar; 12(2):113-121. PubMed ID: 30740886
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alternative strategies in cardiac preclinical research and new clinical trial formats.
    Kreutzer FP; Meinecke A; Schmidt K; Fiedler J; Thum T
    Cardiovasc Res; 2022 Feb; 118(3):746-762. PubMed ID: 33693475
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Engineering Patient-on-a-Chip Models for Personalized Cancer Medicine.
    Caballero D; Reis RL; Kundu SC
    Adv Exp Med Biol; 2020; 1230():43-64. PubMed ID: 32285364
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Organ-on-a-chip devices advance to market.
    Zhang B; Radisic M
    Lab Chip; 2017 Jul; 17(14):2395-2420. PubMed ID: 28617487
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Organ-on-a-chip: development and clinical prospects toward toxicity assessment with an emphasis on bone marrow.
    Kim J; Lee H; Selimović Š; Gauvin R; Bae H
    Drug Saf; 2015 May; 38(5):409-18. PubMed ID: 25820287
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Impact of organ-on-a-chip technology on pharmaceutical R&D costs.
    Franzen N; van Harten WH; Retèl VP; Loskill P; van den Eijnden-van Raaij J; IJzerman M
    Drug Discov Today; 2019 Sep; 24(9):1720-1724. PubMed ID: 31185290
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure.
    Sung JH; Srinivasan B; Esch MB; McLamb WT; Bernabini C; Shuler ML; Hickman JJ
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1225-39. PubMed ID: 24951471
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Advances in microfluidic 3D cell culture for preclinical drug development.
    Russo M; Cejas CM; Pitingolo G
    Prog Mol Biol Transl Sci; 2022; 187(1):163-204. PubMed ID: 35094774
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The design basis and application in urology of the tumor-on-a-chip platform.
    Sheng F; Jia RP
    Urol Oncol; 2022 Jul; 40(7):331-342. PubMed ID: 35589473
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Engineered heart tissues and induced pluripotent stem cells: Macro- and microstructures for disease modeling, drug screening, and translational studies.
    Tzatzalos E; Abilez OJ; Shukla P; Wu JC
    Adv Drug Deliv Rev; 2016 Jan; 96():234-244. PubMed ID: 26428619
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology.
    Lee SH; Sung JH
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28945001
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A perfused human blood-brain barrier on-a-chip for high-throughput assessment of barrier function and antibody transport.
    Wevers NR; Kasi DG; Gray T; Wilschut KJ; Smith B; van Vught R; Shimizu F; Sano Y; Kanda T; Marsh G; Trietsch SJ; Vulto P; Lanz HL; Obermeier B
    Fluids Barriers CNS; 2018 Aug; 15(1):23. PubMed ID: 30165870
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Organs-on-chips: research and commercial perspectives.
    Balijepalli A; Sivaramakrishan V
    Drug Discov Today; 2017 Feb; 22(2):397-403. PubMed ID: 27866008
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The NIH microphysiological systems program: developing in vitro tools for safety and efficacy in drug development.
    Tagle DA
    Curr Opin Pharmacol; 2019 Oct; 48():146-154. PubMed ID: 31622895
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening.
    Nam KH; Smith AS; Lone S; Kwon S; Kim DH
    J Lab Autom; 2015 Jun; 20(3):201-15. PubMed ID: 25385716
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Engineered Liver Platforms for Different Phases of Drug Development.
    Ware BR; Khetani SR
    Trends Biotechnol; 2017 Feb; 35(2):172-183. PubMed ID: 27592803
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models.
    Deddens JC; Sadeghi AH; Hjortnaes J; van Laake LW; Buijsrogge M; Doevendans PA; Khademhosseini A; Sluijter JP
    Adv Healthc Mater; 2017 Feb; 6(3):. PubMed ID: 27906521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.