These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 28429267)
1. Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Ratola N; Ramos S; Homem V; Silva JA; Jiménez-Guerrero P; Amigo JM; Santos L; Alves A Environ Sci Pollut Res Int; 2017 May; 24(13):11878. PubMed ID: 28429267 [TBL] [Abstract][Full Text] [Related]
2. Using air, soil and vegetation to assess the environmental behaviour of siloxanes. Ratola N; Ramos S; Homem V; Silva JA; Jiménez-Guerrero P; Amigo JM; Santos L; Alves A Environ Sci Pollut Res Int; 2016 Feb; 23(4):3273-84. PubMed ID: 26490903 [TBL] [Abstract][Full Text] [Related]
3. Occurrence and seasonality of cyclic volatile methyl siloxanes in Arctic air. Krogseth IS; Kierkegaard A; McLachlan MS; Breivik K; Hansen KM; Schlabach M Environ Sci Technol; 2013 Jan; 47(1):502-9. PubMed ID: 23194257 [TBL] [Abstract][Full Text] [Related]
4. Temporal variations of cyclic and linear volatile methylsiloxanes in the atmosphere using passive samplers and high-volume air samplers. Ahrens L; Harner T; Shoeib M Environ Sci Technol; 2014 Aug; 48(16):9374-81. PubMed ID: 25072102 [TBL] [Abstract][Full Text] [Related]
5. Wastewater treatment plants and landfills emit volatile methyl siloxanes (VMSs) to the atmosphere: investigations using a new passive air sampler. Cheng Y; Shoeib M; Ahrens L; Harner T; Ma J Environ Pollut; 2011 Oct; 159(10):2380-6. PubMed ID: 21784566 [TBL] [Abstract][Full Text] [Related]
6. Global distribution of linear and cyclic volatile methyl siloxanes in air. Genualdi S; Harner T; Cheng Y; Macleod M; Hansen KM; van Egmond R; Shoeib M; Lee SC Environ Sci Technol; 2011 Apr; 45(8):3349-54. PubMed ID: 21438524 [TBL] [Abstract][Full Text] [Related]
7. From the shop to the drain - Volatile methylsiloxanes in cosmetics and personal care products. Capela D; Alves A; Homem V; Santos L Environ Int; 2016; 92-93():50-62. PubMed ID: 27058927 [TBL] [Abstract][Full Text] [Related]
8. An analytical multi-residue approach for the determination of semi-volatile organic pollutants in pine needles. Silva JA; Ratola N; Ramos S; Homem V; Santos L; Alves A Anal Chim Acta; 2015 Feb; 858():24-31. PubMed ID: 25597798 [TBL] [Abstract][Full Text] [Related]
9. Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants. Shoeib M; Schuster J; Rauert C; Su K; Smyth SA; Harner T Environ Pollut; 2016 Nov; 218():595-604. PubMed ID: 27476425 [TBL] [Abstract][Full Text] [Related]
10. Biomonitoring of pesticides by pine needles--chemical scoring, risk of exposure, levels and trends. Ratola N; Homem V; Silva JA; Araújo R; Amigo JM; Santos L; Alves A Sci Total Environ; 2014 Apr; 476-477():114-24. PubMed ID: 24463249 [TBL] [Abstract][Full Text] [Related]
11. Comprehensive assessment of pine needles as bioindicators of PAHs using multivariate analysis. The importance of temporal trends. Ratola N; Amigo JM; Alves A Chemosphere; 2010 Dec; 81(11):1517-25. PubMed ID: 20833410 [TBL] [Abstract][Full Text] [Related]
12. Per- and polyfluoroalkyl substances and volatile methyl siloxanes in global air: Spatial and temporal trends. Saini A; Chinnadurai S; Schuster JK; Eng A; Harner T Environ Pollut; 2023 Apr; 323():121291. PubMed ID: 36796663 [TBL] [Abstract][Full Text] [Related]
13. Determination of cyclic and linear siloxanes in soil samples by ultrasonic-assisted extraction and gas chromatography-mass spectrometry. Sánchez-Brunete C; Miguel E; Albero B; Tadeo JL J Chromatogr A; 2010 Nov; 1217(45):7024-30. PubMed ID: 20926089 [TBL] [Abstract][Full Text] [Related]
14. Personal and ambient exposures to air toxics in Camden, New Jersey. Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J; Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of cyclic and linear siloxanes in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Tran TM; Kannan K Sci Total Environ; 2015 Apr; 511():138-44. PubMed ID: 25540848 [TBL] [Abstract][Full Text] [Related]
16. Free amino acid concentrations and nitrogen isotope signatures in Pinus massoniana (Lamb.) needles of different ages for indicating atmospheric nitrogen deposition. Xu Y; Xiao H Environ Pollut; 2017 Feb; 221():180-190. PubMed ID: 27916493 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Rauert C; Shoieb M; Schuster JK; Eng A; Harner T Environ Pollut; 2018 Jul; 238():94-102. PubMed ID: 29547866 [TBL] [Abstract][Full Text] [Related]
18. Reducing sampling artifacts in active air sampling methodology for remote monitoring and atmospheric fate assessment of cyclic volatile methylsiloxanes. Warner NA; Nikiforov V; Krogseth IS; Bjørneby SM; Kierkegaard A; Bohlin-Nizzetto P Chemosphere; 2020 Sep; 255():126967. PubMed ID: 32408127 [TBL] [Abstract][Full Text] [Related]
19. Seasonal occurrence, concentrations, and occupational exposure to VMSs in different environments of a WWTP. Sánchez-Soberón F; Ratola N Environ Pollut; 2022 Dec; 315():120423. PubMed ID: 36243192 [TBL] [Abstract][Full Text] [Related]
20. Lichens as an integrating tool for monitoring PAH atmospheric deposition: a comparison with soil, air and pine needles. Augusto S; Máguas C; Matos J; Pereira MJ; Branquinho C Environ Pollut; 2010 Feb; 158(2):483-9. PubMed ID: 19782448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]