These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 28429315)
1. The Mitochondrion of Euglena gracilis. Zimorski V; Rauch C; van Hellemond JJ; Tielens AGM; Martin WF Adv Exp Med Biol; 2017; 979():19-37. PubMed ID: 28429315 [TBL] [Abstract][Full Text] [Related]
2. Variability of wax ester fermentation in natural and bleached Euglena gracilis Strains in response to oxygen and the elongase inhibitor flufenacet. Tucci S; Vacula R; Krajcovic J; Proksch P; Martin W J Eukaryot Microbiol; 2010; 57(1):63-9. PubMed ID: 20015184 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis. Hoffmeister M; Piotrowski M; Nowitzki U; Martin W J Biol Chem; 2005 Feb; 280(6):4329-38. PubMed ID: 15569691 [TBL] [Abstract][Full Text] [Related]
4. Fatty acid synthesis in mitochondria of Euglena gracilis. Inui H; Miyatake K; Nakano Y; Kitaoka S Eur J Biochem; 1984 Jul; 142(1):121-6. PubMed ID: 6146525 [TBL] [Abstract][Full Text] [Related]
5. Anaerobic respiration coupled with mitochondrial fatty acid synthesis in wax ester fermentation by Euglena gracilis. Nakazawa M; Ando H; Nishimoto A; Ohta T; Sakamoto K; Ishikawa T; Ueda M; Sakamoto T; Nakano Y; Miyatake K; Inui H FEBS Lett; 2018 Dec; 592(24):4020-4027. PubMed ID: 30328102 [TBL] [Abstract][Full Text] [Related]
6. The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Inui H; Miyatake K; Nakano Y; Kitaoka S Arch Biochem Biophys; 1985 Mar; 237(2):423-9. PubMed ID: 3919646 [TBL] [Abstract][Full Text] [Related]
7. Euglena gracilis rhodoquinone:ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions. Hoffmeister M; van der Klei A; Rotte C; van Grinsven KW; van Hellemond JJ; Henze K; Tielens AG; Martin W J Biol Chem; 2004 May; 279(21):22422-9. PubMed ID: 15014069 [TBL] [Abstract][Full Text] [Related]
8. Comparative proteomic analysis of mitochondria isolated from Euglena gracilis under aerobic and hypoxic conditions. Tamaki S; Nishino K; Ogawa T; Maruta T; Sawa Y; Arakawa K; Ishikawa T PLoS One; 2019; 14(12):e0227226. PubMed ID: 31891638 [TBL] [Abstract][Full Text] [Related]
9. Wax Ester Fermentation and Its Application for Biofuel Production. Inui H; Ishikawa T; Tamoi M Adv Exp Med Biol; 2017; 979():269-283. PubMed ID: 28429326 [TBL] [Abstract][Full Text] [Related]
10. Understanding wax ester synthesis in Euglena gracilis: Insights into mitochondrial anaerobic respiration. Nakazawa M; Inui H Protist; 2023 Dec; 174(6):125996. PubMed ID: 38041972 [TBL] [Abstract][Full Text] [Related]
11. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Rotte C; Stejskal F; Zhu G; Keithly JS; Martin W Mol Biol Evol; 2001 May; 18(5):710-20. PubMed ID: 11319255 [TBL] [Abstract][Full Text] [Related]
12. Comparative profiling analysis of central metabolites in Euglena gracilis under various cultivation conditions. Matsuda F; Hayashi M; Kondo A Biosci Biotechnol Biochem; 2011; 75(11):2253-6. PubMed ID: 22056447 [TBL] [Abstract][Full Text] [Related]
13. A major isoform of mitochondrial trans-2-enoyl-CoA reductase is dispensable for wax ester production in Euglena gracilis under anaerobic conditions. Tomiyama T; Goto K; Tanaka Y; Maruta T; Ogawa T; Sawa Y; Ito T; Ishikawa T PLoS One; 2019; 14(1):e0210755. PubMed ID: 30650145 [TBL] [Abstract][Full Text] [Related]
14. Physiological functions of pyruvate:NADP Nakazawa M; Hayashi R; Takenaka S; Inui H; Ishikawa T; Ueda M; Sakamoto T; Nakano Y; Miyatake K Biosci Biotechnol Biochem; 2017 Jul; 81(7):1386-1393. PubMed ID: 28463550 [TBL] [Abstract][Full Text] [Related]
15. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions. Yoshida Y; Tomiyama T; Maruta T; Tomita M; Ishikawa T; Arakawa K BMC Genomics; 2016 Mar; 17():182. PubMed ID: 26939900 [TBL] [Abstract][Full Text] [Related]
16. Genome editing-based mutagenesis stably modifies composition of wax esters synthesized by Euglena gracilis under anaerobic conditions. Nagamine S; Oishi R; Ueda M; Sakamoto T; Nakazawa M Bioresour Technol; 2024 Oct; 410():131255. PubMed ID: 39127356 [TBL] [Abstract][Full Text] [Related]
17. Alteration of Wax Ester Content and Composition in Euglena gracilis with Gene Silencing of 3-ketoacyl-CoA Thiolase Isozymes. Nakazawa M; Andoh H; Koyama K; Watanabe Y; Nakai T; Ueda M; Sakamoto T; Inui H; Nakano Y; Miyatake K Lipids; 2015 May; 50(5):483-92. PubMed ID: 25860691 [TBL] [Abstract][Full Text] [Related]
18. NADPH-to-NADH conversion by mitochondrial transhydrogenase is indispensable for sustaining anaerobic metabolism in Euglena gracilis. Nakazawa M; Takahashi M; Hayashi R; Matsubara Y; Kashiyama Y; Ueda M; Inui H; Sakamoto T FEBS Lett; 2021 Dec; 595(23):2922-2930. PubMed ID: 34738635 [TBL] [Abstract][Full Text] [Related]
19. Wax Ester Synthase/Diacylglycerol Acyltransferase Isoenzymes Play a Pivotal Role in Wax Ester Biosynthesis in Euglena gracilis. Tomiyama T; Kurihara K; Ogawa T; Maruta T; Ogawa T; Ohta D; Sawa Y; Ishikawa T Sci Rep; 2017 Oct; 7(1):13504. PubMed ID: 29044218 [TBL] [Abstract][Full Text] [Related]
20. Fatty acyl-CoA reductase and wax synthase from Euglena gracilis in the biosynthesis of medium-chain wax esters. Teerawanichpan P; Qiu X Lipids; 2010 Mar; 45(3):263-73. PubMed ID: 20195781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]