These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28429739)

  • 1. A large-scale benchmark of gene prioritization methods.
    Guala D; Sonnhammer ELL
    Sci Rep; 2017 Apr; 7():46598. PubMed ID: 28429739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmarking network-based gene prioritization methods for cerebral small vessel disease.
    Zhang H; Ferguson A; Robertson G; Jiang M; Zhang T; Sudlow C; Smith K; Rannikmae K; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPEC: a Cytoscape plug-in for random walk-based gene prioritization and biomedical evidence collection.
    Le DH; Kwon YK
    Comput Biol Chem; 2012 Apr; 37():17-23. PubMed ID: 22430954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ProphTools: general prioritization tools for heterogeneous biological networks.
    Navarro C; Martínez V; Blanco A; Cano C
    Gigascience; 2017 Dec; 6(12):1-8. PubMed ID: 29186475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Survey of Gene Prioritization Tools for Mendelian and Complex Human Diseases.
    Zolotareva O; Kleine M
    J Integr Bioinform; 2019 Sep; 16(4):. PubMed ID: 31494632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laplacian normalization and random walk on heterogeneous networks for disease-gene prioritization.
    Zhao ZQ; Han GS; Yu ZG; Li J
    Comput Biol Chem; 2015 Aug; 57():21-8. PubMed ID: 25736609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk.
    Zhang J; Zou S; Deng L
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):99. PubMed ID: 30453964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MaxLink: network-based prioritization of genes tightly linked to a disease seed set.
    Guala D; Sjölund E; Sonnhammer EL
    Bioinformatics; 2014 Sep; 30(18):2689-90. PubMed ID: 24849579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking selected computational gene network growing tools in context of virus-host interactions.
    Taye B; Vaz C; Tanavde V; Kuznetsov VA; Eisenhaber F; Sugrue RJ; Maurer-Stroh S
    Sci Rep; 2017 Jul; 7(1):5805. PubMed ID: 28724991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of phenotype-driven gene prioritization methods for Mendelian diseases.
    Yuan X; Wang J; Dai B; Sun Y; Zhang K; Chen F; Peng Q; Huang Y; Zhang X; Chen J; Xu X; Chuan J; Mu W; Li H; Fang P; Gong Q; Zhang P
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35134823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NET-GE: a novel NETwork-based Gene Enrichment for detecting biological processes associated to Mendelian diseases.
    Di Lena P; Martelli PL; Fariselli P; Casadio R
    BMC Genomics; 2015; 16 Suppl 8(Suppl 8):S6. PubMed ID: 26110971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extensive analysis of disease-gene associations using network integration and fast kernel-based gene prioritization methods.
    Valentini G; Paccanaro A; Caniza H; Romero AE; Re M
    Artif Intell Med; 2014 Jun; 61(2):63-78. PubMed ID: 24726035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candidate gene prioritization with Endeavour.
    Tranchevent LC; Ardeshirdavani A; ElShal S; Alcaide D; Aerts J; Auboeuf D; Moreau Y
    Nucleic Acids Res; 2016 Jul; 44(W1):W117-21. PubMed ID: 27131783
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring semantic similarities by combining gene ontology annotations and gene co-function networks.
    Peng J; Uygun S; Kim T; Wang Y; Rhee SY; Chen J
    BMC Bioinformatics; 2015 Feb; 16():44. PubMed ID: 25886899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-based ranking methods for prediction of novel disease associated microRNAs.
    Le DH
    Comput Biol Chem; 2015 Oct; 58():139-48. PubMed ID: 26231308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene prioritization using Bayesian matrix factorization with genomic and phenotypic side information.
    Zakeri P; Simm J; Arany A; ElShal S; Moreau Y
    Bioinformatics; 2018 Jul; 34(13):i447-i456. PubMed ID: 29949967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FlyNet: a versatile network prioritization server for the Drosophila community.
    Shin J; Yang S; Kim E; Kim CY; Shim H; Cho A; Kim H; Hwang S; Shim JE; Lee I
    Nucleic Acids Res; 2015 Jul; 43(W1):W91-7. PubMed ID: 25943544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.