BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 28430084)

  • 41. Fusarium culmorum affects expression of biofilm formation key genes in Bacillus subtilis.
    Khezri M; Jouzani GS; Ahmadzadeh M
    Braz J Microbiol; 2016; 47(1):47-54. PubMed ID: 26887226
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The motility-matrix production switch in
    Dannenberg S; Penning J; Simm A; Klumpp S
    J Bacteriol; 2024 Jan; 206(1):e0004723. PubMed ID: 38088582
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Paralogous antirepressors acting on the master regulator for biofilm formation in Bacillus subtilis.
    Chai Y; Kolter R; Losick R
    Mol Microbiol; 2009 Nov; 74(4):876-87. PubMed ID: 19788541
    [TBL] [Abstract][Full Text] [Related]  

  • 44. DegU and Spo0A jointly control transcription of two loci required for complex colony development by Bacillus subtilis.
    Verhamme DT; Murray EJ; Stanley-Wall NR
    J Bacteriol; 2009 Jan; 191(1):100-8. PubMed ID: 18978066
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Computational identification of the Spo0A-phosphate regulon that is essential for the cellular differentiation and development in Gram-positive spore-forming bacteria.
    Liu J; Tan K; Stormo GD
    Nucleic Acids Res; 2003 Dec; 31(23):6891-903. PubMed ID: 14627822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis.
    Newman JA; Rodrigues C; Lewis RJ
    J Biol Chem; 2013 Apr; 288(15):10766-78. PubMed ID: 23430750
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant Root Exudates Are Involved in
    Wang N; Wang L; Zhu K; Hou S; Chen L; Mi D; Gui Y; Qi Y; Jiang C; Guo JH
    Front Microbiol; 2019; 10():98. PubMed ID: 30766525
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An evolutionary link between sporulation and prophage induction in the structure of a repressor:anti-repressor complex.
    Lewis RJ; Brannigan JA; Offen WA; Smith I; Wilkinson AJ
    J Mol Biol; 1998 Nov; 283(5):907-12. PubMed ID: 9799632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways.
    Niu DD; Liu HX; Jiang CH; Wang YP; Wang QY; Jin HL; Guo JH
    Mol Plant Microbe Interact; 2011 May; 24(5):533-42. PubMed ID: 21198361
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis.
    Hamon MA; Lazazzera BA
    Mol Microbiol; 2001 Dec; 42(5):1199-209. PubMed ID: 11886552
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacillus anthracis sin locus and regulation of secreted proteases.
    Pflughoeft KJ; Sumby P; Koehler TM
    J Bacteriol; 2011 Feb; 193(3):631-9. PubMed ID: 21131488
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FtsEX-CwlO regulates biofilm formation by a plant-beneficial rhizobacterium Bacillus velezensis SQR9.
    Li Q; Li Z; Li X; Xia L; Zhou X; Xu Z; Shao J; Shen Q; Zhang R
    Res Microbiol; 2018 Apr; 169(3):166-176. PubMed ID: 29427638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quaternary re-arrangement analysed by spectral enhancement: the interaction of a sporulation repressor with its antagonist.
    Scott DJ; Leejeerajumnean S; Brannigan JA; Lewis RJ; Wilkinson AJ; Hoggett JG
    J Mol Biol; 1999 Nov; 293(5):997-1004. PubMed ID: 10547280
    [TBL] [Abstract][Full Text] [Related]  

  • 54. MstX and a putative potassium channel facilitate biofilm formation in Bacillus subtilis.
    Lundberg ME; Becker EC; Choe S
    PLoS One; 2013; 8(5):e60993. PubMed ID: 23737939
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacillus cereus AR156 induces resistance against Rhizopus rot through priming of defense responses in peach fruit.
    Wang X; Xu F; Wang J; Jin P; Zheng Y
    Food Chem; 2013 Jan; 136(2):400-6. PubMed ID: 23122077
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SinR is a mutational target for fine-tuning biofilm formation in laboratory-evolved strains of Bacillus subtilis.
    Leiman SA; Arboleda LC; Spina JS; McLoon AL
    BMC Microbiol; 2014 Nov; 14():301. PubMed ID: 25433524
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.
    Grau RR; de Oña P; Kunert M; Leñini C; Gallegos-Monterrosa R; Mhatre E; Vileta D; Donato V; Hölscher T; Boland W; Kuipers OP; Kovács ÁT
    mBio; 2015 Jul; 6(4):e00581. PubMed ID: 26152584
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The Bacterial Tyrosine Kinase Activator TkmA Contributes to Biofilm Formation Largely Independently of the Cognate Kinase PtkA in Bacillus subtilis.
    Gao T; Greenwich J; Li Y; Wang Q; Chai Y
    J Bacteriol; 2015 Nov; 197(21):3421-32. PubMed ID: 26283769
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Glutamate Synthase in Biofilm Formation by Bacillus subtilis.
    Kimura T; Kobayashi K
    J Bacteriol; 2020 Jun; 202(14):. PubMed ID: 32393519
    [No Abstract]   [Full Text] [Related]  

  • 60. The comER Gene Plays an Important Role in Biofilm Formation and Sporulation in both Bacillus subtilis and Bacillus cereus.
    Yan F; Yu Y; Wang L; Luo Y; Guo JH; Chai Y
    Front Microbiol; 2016; 7():1025. PubMed ID: 27446060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.