These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28430146)

  • 1. A New Method for Single-Epoch Ambiguity Resolution with Indoor Pseudolite Positioning.
    Li X; Zhang P; Guo J; Wang J; Qiu W
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28430146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A New Method of High-Precision Positioning for an Indoor Pseudolite without Using the Known Point Initialization.
    Zhao Y; Zhang P; Guo J; Li X; Wang J; Yang F; Wang X
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29925816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinematic ME-MAFA for Pseudolite Carrier-Phase Ambiguity Resolution in Precise Single-Point Positioning.
    Liu K; Guo X; Yang J; Li X; Liu C; Tang Y; Meng Z; Yan E
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33143220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reliable Indoor Pseudolite Positioning Based on a Robust Estimation and Partial Ambiguity Resolution Method.
    Li X; Huang G; Zhang P; Zhang Q
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doppler Differential Positioning Technology Using the BDS/GPS Indoor Array Pseudolite System.
    Gan X; Yu B; Huang L; Jia R; Zhang H; Sheng C; Fan G; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31640250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Innovative Fingerprint Location Algorithm for Indoor Positioning Based on Array Pseudolite.
    Huang L; Gan X; Yu B; Zhang H; Li S; Cheng J; Liang X; Wang B
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31614855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RTK/Pseudolite/LAHDE/IMU-PDR Integrated Pedestrian Navigation System for Urban and Indoor Environments.
    Zhu R; Wang Y; Cao H; Yu B; Gan X; Huang L; Zhang H; Li S; Jia H; Chen J
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32213874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise Point Positioning Algorithm for Pseudolite Combined with GNSS in a Constrained Observation Environment.
    Sheng C; Gan X; Yu B; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32085656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperbolic Positioning with Antenna Arrays and Multi-Channel Pseudolite for Indoor Localization.
    Fujii K; Sakamoto Y; Wang W; Arie H; Schmitz A; Sugano S
    Sensors (Basel); 2015 Sep; 15(10):25157-75. PubMed ID: 26437405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A New Ground-Based Pseudolite System Deployment Algorithm Based on MOPSO.
    Tang W; Chen J; Yu C; Ding J; Wang R
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Indoor Positioning System Architecture Using GPS Signals.
    Xu R; Chen W; Xu Y; Ji S
    Sensors (Basel); 2015 Apr; 15(5):10074-87. PubMed ID: 25938199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pseudolite-based positioning system for legacy GNSS receivers.
    Kim C; So H; Lee T; Kee C
    Sensors (Basel); 2014 Mar; 14(4):6104-23. PubMed ID: 24681674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Low-Ambiguity Signal Waveform for Pseudolite Positioning Systems Based on Chirp.
    Liu Q; Huang Z; Kou Y; Wang J
    Sensors (Basel); 2018 Apr; 18(5):. PubMed ID: 29693581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Improved Ambiguity Resolution Algorithm for Smartphone RTK Positioning.
    Jiang Y; Gao Y; Ding W; Liu F; Gao Y
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space State Representation Corrections as an Aid in Pseudolite Positioning.
    RapiƄski J; Tomaszewski D
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31557939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a vector-based tracking loop receiver in a pseudolite navigation system.
    So H; Lee T; Jeon S; Kim C; Kee C; Kim T; Lee S
    Sensors (Basel); 2010; 10(7):6324-46. PubMed ID: 22163552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Improved Ambiguity-Free Method for Precise GNSS Positioning with Utilizing Single Frequency Receivers.
    Yang W; Liu Y; Liu F
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extra-Wide Lane Ambiguity Resolution and Validation for a Single Epoch Based on the Triple-Frequency BeiDou Navigation Satellite System.
    Deng J; Zhang A; Zhu N; Ke F
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stand-alone and hybrid positioning using asynchronous pseudolites.
    Gioia C; Borio D
    Sensors (Basel); 2014 Dec; 15(1):166-93. PubMed ID: 25609041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Precise Point Positioning with Partial Ambiguity Fixing.
    Li P; Zhang X
    Sensors (Basel); 2015 Jun; 15(6):13627-43. PubMed ID: 26067196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.