BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28430186)

  • 1. Independence of nutrient limitation and carbon dioxide impacts on the Southern Ocean coccolithophore Emiliania huxleyi.
    Müller MN; Trull TW; Hallegraeff GM
    ISME J; 2017 Aug; 11(8):1777-1787. PubMed ID: 28430186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO
    Tong S; Gao K; Hutchins DA
    Glob Chang Biol; 2018 Jul; 24(7):3055-3064. PubMed ID: 29356310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulating the effects of light intensity and carbonate system composition on particulate organic and inorganic carbon production in Emiliania huxleyi.
    Holtz LM; Wolf-Gladrow D; Thoms S
    J Theor Biol; 2015 May; 372():192-204. PubMed ID: 25747776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological responses of coccolithophores to abrupt exposure of naturally low pH deep seawater.
    Iglesias-Rodriguez MD; Jones BM; Blanco-Ameijeiras S; Greaves M; Huete-Ortega M; Lebrato M
    PLoS One; 2017; 12(7):e0181713. PubMed ID: 28750008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responses of the Emiliania huxleyi proteome to ocean acidification.
    Jones BM; Iglesias-Rodriguez MD; Skipp PJ; Edwards RJ; Greaves MJ; Young JR; Elderfield H; O'Connor CD
    PLoS One; 2013; 8(4):e61868. PubMed ID: 23593500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO
    Zhang Y; Gao K
    J Photochem Photobiol B; 2021 Apr; 217():112145. PubMed ID: 33735745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the impact of CO2 and pH on the mechanisms of photosynthesis and calcification in the coccolithophore Emiliania huxleyi.
    Bach LT; Mackinder LCM; Schulz KG; Wheeler G; Schroeder DC; Brownlee C; Riebesell U
    New Phytol; 2013 Jul; 199(1):121-134. PubMed ID: 23496417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-CO
    Vázquez V; León P; Gordillo FJL; Jiménez C; Concepción I; Mackenzie K; Bresnan E; Segovia M
    Microb Ecol; 2023 Jul; 86(1):127-143. PubMed ID: 35624343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.
    Benner I; Diner RE; Lefebvre SC; Li D; Komada T; Carpenter EJ; Stillman JH
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1627):20130049. PubMed ID: 23980248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of elevated CO
    Lorenzo MR; Neale PJ; Sobrino C; León P; Vázquez V; Bresnan E; Segovia M
    J Phycol; 2019 Aug; 55(4):775-788. PubMed ID: 31090939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification affects physiology of coccolithophore Emiliania huxleyi and weakens its mechanical resistance to copepods.
    Xu H; Liu H; Chen F; Zhang X; Zhang Z; Ma J; Pan K; Liu H
    Mar Environ Res; 2023 Nov; 192():106232. PubMed ID: 37866975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.
    Sett S; Bach LT; Schulz KG; Koch-Klavsen S; Lebrato M; Riebesell U
    PLoS One; 2014; 9(2):e88308. PubMed ID: 24505472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of multiple drivers of ocean global change on the physiology and functional gene expression of the coccolithophore Emiliania huxleyi.
    Feng Y; Roleda MY; Armstrong E; Summerfield TC; Law CS; Hurd CL; Boyd PW
    Glob Chang Biol; 2020 Oct; 26(10):5630-5645. PubMed ID: 32597547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification.
    Lohbeck KT; Riebesell U; Reusch TB
    Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean.
    Muller EB; Nisbet RM
    Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios.
    Rouco M; Branson O; Lebrato M; Iglesias-Rodríguez MD
    Front Microbiol; 2013; 4():155. PubMed ID: 23785363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solar UV irradiances modulate effects of ocean acidification on the coccolithophorid Emiliania huxleyi.
    Xu K; Gao K
    Photochem Photobiol; 2015; 91(1):92-101. PubMed ID: 25319121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coccolith volume of the Southern Ocean coccolithophore Emiliania huxleyi as a possible indicator for palaeo-cell volume.
    Müller MN; Brandini FP; Trull TW; Hallegraeff GM
    Geobiology; 2021 Jan; 19(1):63-74. PubMed ID: 32931664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi.
    Arnold HE; Kerrison P; Steinke M
    Glob Chang Biol; 2013 Apr; 19(4):1007-16. PubMed ID: 23504879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of temperature and nitrogen sources on physiological performance of the coccolithophore Emiliania huxleyi.
    Wang Z; Tong S; Xu D; Huang X; Sun Y; Wang B; Sun H; Zhang X; Fan X; Wang W; Sun K; Wang Y; Zhang P; Gu Z; Ye N
    Mar Environ Res; 2024 Apr; 196():106405. PubMed ID: 38368649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.