These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28430229)
1. Light scattering from normal and cervical cancer cells. Lin X; Wan N; Weng L; Zhou Y Appl Opt; 2017 Apr; 56(12):3608-3614. PubMed ID: 28430229 [TBL] [Abstract][Full Text] [Related]
2. Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture. Drezek R; Guillaud M; Collier T; Boiko I; Malpica A; Macaulay C; Follen M; Richards-Kortum R J Biomed Opt; 2003 Jan; 8(1):7-16. PubMed ID: 12542374 [TBL] [Abstract][Full Text] [Related]
3. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. Arifler D; Guillaud M; Carraro A; Malpica A; Follen M; Richards-Kortum R J Biomed Opt; 2003 Jul; 8(3):484-94. PubMed ID: 12880355 [TBL] [Abstract][Full Text] [Related]
4. Probing multifractality in tissue refractive index: prospects for precancer detection. Das N; Chatterjee S; Soni J; Jagtap J; Pradhan A; Sengupta TK; Panigrahi PK; Vitkin IA; Ghosh N Opt Lett; 2013 Jan; 38(2):211-3. PubMed ID: 23454965 [TBL] [Abstract][Full Text] [Related]
5. Physical insight into light scattering by photoreceptor cell nuclei. Kreysing M; Boyde L; Guck J; Chalut KJ Opt Lett; 2010 Aug; 35(15):2639-41. PubMed ID: 20680084 [TBL] [Abstract][Full Text] [Related]
6. Investigation on wide-band scattering of a 2-D target above 1-D randomly rough surface by FDTD method. Li J; Guo LX; Jiao YC; Li K Opt Express; 2011 Jan; 19(2):1091-100. PubMed ID: 21263648 [TBL] [Abstract][Full Text] [Related]
7. Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies. Steelman ZA; Eldridge WJ; Weintraub JB; Wax A J Biophotonics; 2017 Dec; 10(12):1714-1722. PubMed ID: 28418104 [TBL] [Abstract][Full Text] [Related]
8. Light scattering characterization of mitochondrial aggregation in single cells. Su XT; Singh K; Rozmus W; Backhouse C; Capjack C Opt Express; 2009 Aug; 17(16):13381-8. PubMed ID: 19654743 [TBL] [Abstract][Full Text] [Related]
9. Numerical simulations of light scattering by red blood cells. Karlsson A; He J; Swartling J; Andersson-Engels S IEEE Trans Biomed Eng; 2005 Jan; 52(1):13-8. PubMed ID: 15651560 [TBL] [Abstract][Full Text] [Related]
10. Simulation of diffuse photon migration in tissue by a Monte Carlo method derived from the optical scattering of spheroids. Hart VP; Doyle TE Appl Opt; 2013 Sep; 52(25):6220-9. PubMed ID: 24085080 [TBL] [Abstract][Full Text] [Related]
11. Unified Mie and fractal scattering by cells and experimental study on application in optical characterization of cellular and subcellular structures. Xu M; Wu TT; Qu JY J Biomed Opt; 2008; 13(2):024015. PubMed ID: 18465978 [TBL] [Abstract][Full Text] [Related]
12. Distance within colloidal dimers probed by rotation-induced oscillations of scattered light. van Vliembergen RW; van IJzendoorn LJ; Prins MW Opt Express; 2016 Jan; 24(2):A123-38. PubMed ID: 26832566 [TBL] [Abstract][Full Text] [Related]
13. Light scattering by multiple red blood cells. He J; Karlsson A; Swartling J; Andersson-Engels S J Opt Soc Am A Opt Image Sci Vis; 2004 Oct; 21(10):1953-61. PubMed ID: 15497423 [TBL] [Abstract][Full Text] [Related]
14. Assessment of internal refractive index profile of stochastically inhomogeneous nuclear models via analysis of two-dimensional optical scattering patterns. Arifler D; Guillaud M J Biomed Opt; 2021 May; 26(5):. PubMed ID: 33973424 [TBL] [Abstract][Full Text] [Related]
16. Mie theory interpretations of light scattering from intact cells. Wilson JD; Foster TH Opt Lett; 2005 Sep; 30(18):2442-4. PubMed ID: 16196346 [TBL] [Abstract][Full Text] [Related]
17. Light scattering microscopy measurements of single nuclei compared with GPU-accelerated FDTD simulations. Stark J; Rothe T; Kieß S; Simon S; Kienle A Phys Med Biol; 2016 Apr; 61(7):2749-61. PubMed ID: 26976736 [TBL] [Abstract][Full Text] [Related]
18. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles. Han L; Zhao H Opt Express; 2014 Dec; 22(26):31907-16. PubMed ID: 25607159 [TBL] [Abstract][Full Text] [Related]
19. Transmission and scanning electron microscopic study of the same cytologic material. Ito E; Kudo R; Miyoshi M; Tanaka S; Kumai K; Takashina T; Hashimoto M Acta Cytol; 1988; 32(4):588-92. PubMed ID: 3400398 [TBL] [Abstract][Full Text] [Related]
20. Modeling the sub-diffraction focusing phenomenon of light propagation through scattering medium. Tseng SH Methods; 2018 Mar; 136():75-80. PubMed ID: 29127044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]