These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
812 related articles for article (PubMed ID: 28430390)
1. Chronic toxicity of binary-metal mixtures of cadmium and zinc to Daphnia magna. Pérez E; Hoang TC Environ Toxicol Chem; 2017 Oct; 36(10):2739-2749. PubMed ID: 28430390 [TBL] [Abstract][Full Text] [Related]
2. Responses of Daphnia magna to chronic exposure of cadmium and nickel mixtures. Pérez E; Hoang TC Chemosphere; 2018 Oct; 208():991-1001. PubMed ID: 30068043 [TBL] [Abstract][Full Text] [Related]
3. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves. Traudt EM; Ranville JF; Smith SA; Meyer JS Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657 [TBL] [Abstract][Full Text] [Related]
4. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna. Meyer JS; Ranville JF; Pontasch M; Gorsuch JW; Adams WJ Environ Toxicol Chem; 2015 Apr; 34(4):799-808. PubMed ID: 25336231 [TBL] [Abstract][Full Text] [Related]
5. Interactive toxicity of Ni, Zn, Cu, and Cd on Daphnia magna at lethal and sub-lethal concentrations. Lari E; Gauthier P; Mohaddes E; Pyle GG J Hazard Mater; 2017 Jul; 334():21-28. PubMed ID: 28380397 [TBL] [Abstract][Full Text] [Related]
6. Effects of metal salt mixtures on Daphnia magna reproduction. Biesinger KE; Christensen GM; Fiandt JT Ecotoxicol Environ Saf; 1986 Feb; 11(1):9-14. PubMed ID: 3956433 [TBL] [Abstract][Full Text] [Related]
7. Effect of age on acute toxicity of cadmium, copper, nickel, and zinc in individual-metal exposures to Daphnia magna neonates. Traudt EM; Ranville JF; Meyer JS Environ Toxicol Chem; 2017 Jan; 36(1):113-119. PubMed ID: 27225713 [TBL] [Abstract][Full Text] [Related]
8. Effect of temperature on chronic toxicity of copper, zinc, and nickel to Daphnia magna. Pereira CMS; Deruytter D; Blust R; De Schamphelaere KAC Environ Toxicol Chem; 2017 Jul; 36(7):1909-1916. PubMed ID: 27976806 [TBL] [Abstract][Full Text] [Related]
9. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel. Evens R; De Schamphelaere KA; Balcaen L; Wang Y; De Roy K; Resano M; Flórez M; Boon N; Vanhaecke F; Janssen CR Aquat Toxicol; 2012 Mar; 109():80-9. PubMed ID: 22210497 [TBL] [Abstract][Full Text] [Related]
10. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient. Traudt EM; Ranville JF; Meyer JS Environ Sci Technol; 2017 Apr; 51(8):4471-4481. PubMed ID: 28329444 [TBL] [Abstract][Full Text] [Related]
11. Analyzing the capacity of the Daphnia magna and Pseudokirchneriella subcapitata bioavailability models to predict chronic zinc toxicity at high pH and low calcium concentrations and formulation of a generalized bioavailability model for D. magna. Van Regenmortel T; Berteloot O; Janssen CR; De Schamphelaere KAC Environ Toxicol Chem; 2017 Oct; 36(10):2781-2798. PubMed ID: 28452073 [TBL] [Abstract][Full Text] [Related]
12. Genetic variability in sublethal tolerance to mixtures of cadmium and zinc in clones of Daphnia magna Straus. Barata C; Markich SJ; Baird DJ; Taylor G; Soares AM Aquat Toxicol; 2002 Oct; 60(1-2):85-99. PubMed ID: 12204589 [TBL] [Abstract][Full Text] [Related]
13. Effects of chronic dietary and waterborne cadmium exposures on the contamination level and reproduction of Daphnia magna. Geffard O; Geffard A; Chaumot A; Vollat B; Alvarez C; Tusseau-Vuillemin MH; Garric J Environ Toxicol Chem; 2008 May; 27(5):1128-34. PubMed ID: 18419192 [TBL] [Abstract][Full Text] [Related]
14. Mixture toxicity of nickel and zinc to Daphnia magna is noninteractive at low effect sizes but becomes synergistic at high effect sizes. Nys C; Asselman J; Hochmuth JD; Janssen CR; Blust R; Smolders E; De Schamphelaere KA Environ Toxicol Chem; 2015 May; 34(5):1091-102. PubMed ID: 25615641 [TBL] [Abstract][Full Text] [Related]
15. Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Muyssen BT; De Schamphelaere KA; Janssen CR Aquat Toxicol; 2006 May; 77(4):393-401. PubMed ID: 16472524 [TBL] [Abstract][Full Text] [Related]
16. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas. Levine SL; von Mérey G; Minderhout T; Manson P; Sutton P Environ Toxicol Chem; 2015 Jun; 34(6):1382-9. PubMed ID: 25690938 [TBL] [Abstract][Full Text] [Related]
17. The effect of binary mixtures of zinc, copper, cadmium, and nickel on the growth of the freshwater diatom Navicula pelliculosa and comparison with mixture toxicity model predictions. Nagai T; De Schamphelaere KA Environ Toxicol Chem; 2016 Nov; 35(11):2765-2773. PubMed ID: 27043471 [TBL] [Abstract][Full Text] [Related]
18. Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Fan WH; Tang G; Zhao CM; Duan Y; Zhang R Environ Toxicol Chem; 2009 Feb; 28(2):305-10. PubMed ID: 18767907 [TBL] [Abstract][Full Text] [Related]
19. Zinc toxicity to Daphnia magna in a two-species microcosm can be predicted from single-species test data: The effects of phosphorus supply and pH. Fettweis A; De Schamphelaere K; Smolders E Environ Toxicol Chem; 2018 Aug; 37(8):2153-2164. PubMed ID: 29761886 [TBL] [Abstract][Full Text] [Related]
20. The effect of pH on chronic zinc toxicity differs between daphnid species: Development of a preliminary chronic zinc Ceriodaphnia dubia bioavailability model. Nys C; Janssen CR; De Schamphelaere KAC Environ Toxicol Chem; 2017 Oct; 36(10):2750-2755. PubMed ID: 28436057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]