BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 28430415)

  • 1. Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device.
    Tsai ML; Tsai DS; Tang L; Chen LJ; Lau SP; He JH
    ACS Nano; 2017 May; 11(5):4564-4570. PubMed ID: 28430415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of fast mid-infrared range photodetector based on hybrid graphene-PbSe nanorods.
    Talebi H; Dolatyari M; Rostami G; Manzuri A; Mahmudi M; Rostami A
    Appl Opt; 2015 Jul; 54(20):6386-90. PubMed ID: 26193418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Above-11%-efficiency organic-inorganic hybrid solar cells with omnidirectional harvesting characteristics by employing hierarchical photon-trapping structures.
    Wei WR; Tsai ML; Ho ST; Tai SH; Ho CR; Tsai SH; Liu CW; Chung RJ; He JH
    Nano Lett; 2013 Aug; 13(8):3658-63. PubMed ID: 23902455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmonic-enhanced perovskite-graphene hybrid photodetectors.
    Sun Z; Aigouy L; Chen Z
    Nanoscale; 2016 Apr; 8(14):7377-83. PubMed ID: 26882839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Si Hybrid Solar Cells with 13% Efficiency via Concurrent Improvement in Optical and Electrical Properties by Employing Graphene Quantum Dots.
    Tsai ML; Wei WR; Tang L; Chang HC; Tai SH; Yang PK; Lau SP; Chen LJ; He JH
    ACS Nano; 2016 Jan; 10(1):815-21. PubMed ID: 26679147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.
    Sato K; Dutta M; Fukata N
    Nanoscale; 2014 Jun; 6(11):6092-101. PubMed ID: 24789210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors.
    Ni Z; Ma L; Du S; Xu Y; Yuan M; Fang H; Wang Z; Xu M; Li D; Yang J; Hu W; Pi X; Yang D
    ACS Nano; 2017 Oct; 11(10):9854-9862. PubMed ID: 28921944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perovskite-based photodetectors: materials and devices.
    Wang H; Kim DH
    Chem Soc Rev; 2017 Aug; 46(17):5204-5236. PubMed ID: 28795697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid graphene-quantum dot phototransistors with ultrahigh gain.
    Konstantatos G; Badioli M; Gaudreau L; Osmond J; Bernechea M; Garcia de Arquer FP; Gatti F; Koppens FH
    Nat Nanotechnol; 2012 May; 7(6):363-8. PubMed ID: 22562036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution-processed hybrid perovskite photodetectors with high detectivity.
    Dou L; Yang YM; You J; Hong Z; Chang WH; Li G; Yang Y
    Nat Commun; 2014 Nov; 5():5404. PubMed ID: 25410021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic nanowire/crystalline silicon p-n heterojunctions for high-sensitivity, broadband photodetectors.
    Deng W; Jie J; Shang Q; Wang J; Zhang X; Yao S; Zhang Q; Zhang X
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):2039-45. PubMed ID: 25545887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An organic-inorganic broadband photodetector based on a single polyaniline nanowire doped with quantum dots.
    Yang X; Liu Y; Lei H; Li B
    Nanoscale; 2016 Aug; 8(34):15529-37. PubMed ID: 27417337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS.
    Sharma M; Pudasaini PR; Ruiz-Zepeda F; Elam D; Ayon AA
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4356-63. PubMed ID: 24568116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicit Gain Equations for Hybrid Graphene-Quantum-Dot Photodetectors.
    Chen K; Zhang C; Zang X; Ma F; Chen Y; Dan Y
    Small; 2021 Jan; 17(2):e2006307. PubMed ID: 33319919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-Quantum Dot Hybrid Photodetectors with Low Dark-Current Readout.
    De Fazio D; Uzlu B; Torre I; Monasterio-Balcells C; Gupta S; Khodkov T; Bi Y; Wang Z; Otto M; Lemme MC; Goossens S; Neumaier D; Koppens FHL
    ACS Nano; 2020 Sep; 14(9):11897-11905. PubMed ID: 32790352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic and quantum dot hybrid photodetectors: towards full-band and fast detection.
    Liu J; Wang J; Xian K; Zhao W; Zhou Z; Li S; Ye L
    Chem Commun (Camb); 2023 Jan; 59(3):260-269. PubMed ID: 36510729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solution-processed graphene quantum dot deep-UV photodetectors.
    Zhang Q; Jie J; Diao S; Shao Z; Zhang Q; Wang L; Deng W; Hu W; Xia H; Yuan X; Lee ST
    ACS Nano; 2015 Feb; 9(2):1561-70. PubMed ID: 25625624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications.
    Paulo S; Palomares E; Martinez-Ferrero E
    Nanomaterials (Basel); 2016 Aug; 6(9):. PubMed ID: 28335285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics.
    McDonald SA; Konstantatos G; Zhang S; Cyr PW; Klem EJ; Levina L; Sargent EH
    Nat Mater; 2005 Feb; 4(2):138-42. PubMed ID: 15640806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrathin Broadband Germanium-Graphene Hybrid Photodetector with High Performance.
    Yang F; Cong H; Yu K; Zhou L; Wang N; Liu Z; Li C; Wang Q; Cheng B
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13422-13429. PubMed ID: 28361534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.