These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
851 related articles for article (PubMed ID: 28430426)
1. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. Alford RF; Leaver-Fay A; Jeliazkov JR; O'Meara MJ; DiMaio FP; Park H; Shapovalov MV; Renfrew PD; Mulligan VK; Kappel K; Labonte JW; Pacella MS; Bonneau R; Bradley P; Dunbrack RL; Das R; Baker D; Kuhlman B; Kortemme T; Gray JJ J Chem Theory Comput; 2017 Jun; 13(6):3031-3048. PubMed ID: 28430426 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous Optimization of Biomolecular Energy Functions on Features from Small Molecules and Macromolecules. Park H; Bradley P; Greisen P; Liu Y; Mulligan VK; Kim DE; Baker D; DiMaio F J Chem Theory Comput; 2016 Dec; 12(12):6201-6212. PubMed ID: 27766851 [TBL] [Abstract][Full Text] [Related]
3. A Framework to Simplify Combined Sampling Strategies in Rosetta. Porter JR; Weitzner BD; Lange OF PLoS One; 2015; 10(9):e0138220. PubMed ID: 26381271 [TBL] [Abstract][Full Text] [Related]
4. Modeling symmetric macromolecular structures in Rosetta3. DiMaio F; Leaver-Fay A; Bradley P; Baker D; André I PLoS One; 2011; 6(6):e20450. PubMed ID: 21731614 [TBL] [Abstract][Full Text] [Related]
5. Macromolecular modeling with rosetta. Das R; Baker D Annu Rev Biochem; 2008; 77():363-82. PubMed ID: 18410248 [TBL] [Abstract][Full Text] [Related]
6. Systematic Comparison of Amber and Rosetta Energy Functions for Protein Structure Evaluation. Rubenstein AB; Blacklock K; Nguyen H; Case DA; Khare SD J Chem Theory Comput; 2018 Nov; 14(11):6015-6025. PubMed ID: 30240210 [TBL] [Abstract][Full Text] [Related]
7. Macromolecular modeling and design in Rosetta: recent methods and frameworks. Leman JK; Weitzner BD; Lewis SM; Adolf-Bryfogle J; Alam N; Alford RF; Aprahamian M; Baker D; Barlow KA; Barth P; Basanta B; Bender BJ; Blacklock K; Bonet J; Boyken SE; Bradley P; Bystroff C; Conway P; Cooper S; Correia BE; Coventry B; Das R; De Jong RM; DiMaio F; Dsilva L; Dunbrack R; Ford AS; Frenz B; Fu DY; Geniesse C; Goldschmidt L; Gowthaman R; Gray JJ; Gront D; Guffy S; Horowitz S; Huang PS; Huber T; Jacobs TM; Jeliazkov JR; Johnson DK; Kappel K; Karanicolas J; Khakzad H; Khar KR; Khare SD; Khatib F; Khramushin A; King IC; Kleffner R; Koepnick B; Kortemme T; Kuenze G; Kuhlman B; Kuroda D; Labonte JW; Lai JK; Lapidoth G; Leaver-Fay A; Lindert S; Linsky T; London N; Lubin JH; Lyskov S; Maguire J; Malmström L; Marcos E; Marcu O; Marze NA; Meiler J; Moretti R; Mulligan VK; Nerli S; Norn C; Ó'Conchúir S; Ollikainen N; Ovchinnikov S; Pacella MS; Pan X; Park H; Pavlovicz RE; Pethe M; Pierce BG; Pilla KB; Raveh B; Renfrew PD; Burman SSR; Rubenstein A; Sauer MF; Scheck A; Schief W; Schueler-Furman O; Sedan Y; Sevy AM; Sgourakis NG; Shi L; Siegel JB; Silva DA; Smith S; Song Y; Stein A; Szegedy M; Teets FD; Thyme SB; Wang RY; Watkins A; Zimmerman L; Bonneau R Nat Methods; 2020 Jul; 17(7):665-680. PubMed ID: 32483333 [TBL] [Abstract][Full Text] [Related]
8. Prediction of the binding energy for small molecules, peptides and proteins. Schapira M; Totrov M; Abagyan R J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408 [TBL] [Abstract][Full Text] [Related]
9. Polarizable atomic multipole x-ray refinement: hydration geometry and application to macromolecules. Fenn TD; Schnieders MJ; Brunger AT; Pande VS Biophys J; 2010 Jun; 98(12):2984-92. PubMed ID: 20550911 [TBL] [Abstract][Full Text] [Related]
10. Use of molecular dynamics and free energy perturbation calculations in anti-human immunodeficiency virus drug design. McCarrick MA; Kollman P Methods Enzymol; 1994; 241():370-84. PubMed ID: 7854189 [No Abstract] [Full Text] [Related]
11. Advances in coarse-grained modeling of macromolecular complexes. Pak AJ; Voth GA Curr Opin Struct Biol; 2018 Oct; 52():119-126. PubMed ID: 30508766 [TBL] [Abstract][Full Text] [Related]
12. Exploring the drug resistance of V32I and M46L mutant HIV-1 protease to inhibitor TMC114: flap dynamics and binding mechanism. Meher BR; Wang Y J Mol Graph Model; 2015 Mar; 56():60-73. PubMed ID: 25562662 [TBL] [Abstract][Full Text] [Related]
13. Curling of flap tips in HIV-1 protease as a mechanism for substrate entry and tolerance of drug resistance. Scott WR; Schiffer CA Structure; 2000 Dec; 8(12):1259-65. PubMed ID: 11188690 [TBL] [Abstract][Full Text] [Related]
14. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. Wang W; Kollman PA J Mol Biol; 2000 Nov; 303(4):567-82. PubMed ID: 11054292 [TBL] [Abstract][Full Text] [Related]
15. Inclusion of multiple fragment types in the site identification by ligand competitive saturation (SILCS) approach. Raman EP; Yu W; Lakkaraju SK; MacKerell AD J Chem Inf Model; 2013 Dec; 53(12):3384-98. PubMed ID: 24245913 [TBL] [Abstract][Full Text] [Related]
16. Scientific benchmarks for guiding macromolecular energy function improvement. Leaver-Fay A; O'Meara MJ; Tyka M; Jacak R; Song Y; Kellogg EH; Thompson J; Davis IW; Pache RA; Lyskov S; Gray JJ; Kortemme T; Richardson JS; Havranek JJ; Snoeyink J; Baker D; Kuhlman B Methods Enzymol; 2013; 523():109-43. PubMed ID: 23422428 [TBL] [Abstract][Full Text] [Related]
17. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD; Zhu T; Zhang SL; Wang D; Zhang QG Eur J Med Chem; 2010 Jan; 45(1):227-35. PubMed ID: 19910081 [TBL] [Abstract][Full Text] [Related]
18. A semiempirical free energy force field with charge-based desolvation. Huey R; Morris GM; Olson AJ; Goodsell DS J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016 [TBL] [Abstract][Full Text] [Related]
19. Experimental Evidence of Solvent-Separated Ion Pairs as Metastable States in Electrostatic Interactions of Biological Macromolecules. Yu B; Pettitt BM; Iwahara J J Phys Chem Lett; 2019 Dec; 10(24):7937-7941. PubMed ID: 31809050 [TBL] [Abstract][Full Text] [Related]
20. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]