These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 28430426)

  • 21. Transition networks for modeling the kinetics of conformational change in macromolecules.
    Noé F; Fischer S
    Curr Opin Struct Biol; 2008 Apr; 18(2):154-62. PubMed ID: 18378442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FACTS: Fast analytical continuum treatment of solvation.
    Haberthür U; Caflisch A
    J Comput Chem; 2008 Apr; 29(5):701-15. PubMed ID: 17918282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. phenix.mr_rosetta: molecular replacement and model rebuilding with Phenix and Rosetta.
    Terwilliger TC; Dimaio F; Read RJ; Baker D; Bunkóczi G; Adams PD; Grosse-Kunstleve RW; Afonine PV; Echols N
    J Struct Funct Genomics; 2012 Jun; 13(2):81-90. PubMed ID: 22418934
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multi-drug resistance profile of PR20 HIV-1 protease is attributed to distorted conformational and drug binding landscape: molecular dynamics insights.
    Chetty S; Bhakat S; Martin AJ; Soliman ME
    J Biomol Struct Dyn; 2016; 34(1):135-51. PubMed ID: 25671669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizing Protein-Ligand Binding Using Atomistic Simulation and Machine Learning: Application to Drug Resistance in HIV-1 Protease.
    Whitfield TW; Ragland DA; Zeldovich KB; Schiffer CA
    J Chem Theory Comput; 2020 Feb; 16(2):1284-1299. PubMed ID: 31877249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Protocols for Molecular Modeling with Rosetta3 and RosettaScripts.
    Bender BJ; Cisneros A; Duran AM; Finn JA; Fu D; Lokits AD; Mueller BK; Sangha AK; Sauer MF; Sevy AM; Sliwoski G; Sheehan JH; DiMaio F; Meiler J; Moretti R
    Biochemistry; 2016 Aug; 55(34):4748-63. PubMed ID: 27490953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A lipophilicity-based energy function for membrane-protein modelling and design.
    Weinstein JY; Elazar A; Fleishman SJ
    PLoS Comput Biol; 2019 Aug; 15(8):e1007318. PubMed ID: 31461441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational analysis of HIV-1 protease protein binding pockets.
    Ko GM; Reddy AS; Kumar S; Bailey BA; Garg R
    J Chem Inf Model; 2010 Oct; 50(10):1759-71. PubMed ID: 20925403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Catalytic contributions from remote regions of enzyme structure.
    Lee J; Goodey NM
    Chem Rev; 2011 Dec; 111(12):7595-624. PubMed ID: 21923192
    [No Abstract]   [Full Text] [Related]  

  • 31. RosettaEPR: rotamer library for spin label structure and dynamics.
    Alexander NS; Stein RA; Koteiche HA; Kaufmann KW; McHaourab HS; Meiler J
    PLoS One; 2013; 8(9):e72851. PubMed ID: 24039810
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrostatics Plays a Crucial Role in HIV-1 Protease Substrate Binding, Drugs Fail to Take Advantage.
    Ahsan M; Pindi C; Senapati S
    Biochemistry; 2020 Sep; 59(36):3316-3331. PubMed ID: 32822154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ligand Binding Pathways and Conformational Transitions of the HIV Protease.
    Miao Y; Huang YM; Walker RC; McCammon JA; Chang CA
    Biochemistry; 2018 Mar; 57(9):1533-1541. PubMed ID: 29394043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empirical force fields for biological macromolecules: overview and issues.
    Mackerell AD
    J Comput Chem; 2004 Oct; 25(13):1584-604. PubMed ID: 15264253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interrogating the Structural Dynamics and Energetics of Biomolecular Systems with Pressure Modulation.
    Winter R
    Annu Rev Biophys; 2019 May; 48():441-463. PubMed ID: 30943042
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease.
    Altman MD; Nalivaika EA; Prabu-Jeyabalan M; Schiffer CA; Tidor B
    Proteins; 2008 Feb; 70(3):678-94. PubMed ID: 17729291
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural, kinetic, and thermodynamic studies of specificity designed HIV-1 protease.
    Alvizo O; Mittal S; Mayo SL; Schiffer CA
    Protein Sci; 2012 Jul; 21(7):1029-41. PubMed ID: 22549928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular dynamics simulations of large macromolecular complexes.
    Perilla JR; Goh BC; Cassidy CK; Liu B; Bernardi RC; Rudack T; Yu H; Wu Z; Schulten K
    Curr Opin Struct Biol; 2015 Apr; 31():64-74. PubMed ID: 25845770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iterative Molecular Dynamics-Rosetta Membrane Protein Structure Refinement Guided by Cryo-EM Densities.
    Leelananda SP; Lindert S
    J Chem Theory Comput; 2017 Oct; 13(10):5131-5145. PubMed ID: 28949136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of potency of protease inhibitors using free energy simulations with polarizable quantum mechanics-based ligand charges and a hybrid water model.
    Das D; Koh Y; Tojo Y; Ghosh AK; Mitsuya H
    J Chem Inf Model; 2009 Dec; 49(12):2851-62. PubMed ID: 19928916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.