These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

851 related articles for article (PubMed ID: 28430426)

  • 41. Role of conformational fluctuations in the enzymatic reaction of HIV-1 protease.
    Piana S; Carloni P; Parrinello M
    J Mol Biol; 2002 May; 319(2):567-83. PubMed ID: 12051929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhancements to the Rosetta Energy Function Enable Improved Identification of Small Molecules that Inhibit Protein-Protein Interactions.
    Bazzoli A; Kelow SP; Karanicolas J
    PLoS One; 2015; 10(10):e0140359. PubMed ID: 26484863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance.
    Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V
    J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predicting drug-resistant mutations of HIV protease.
    Ishikita H; Warshel A
    Angew Chem Int Ed Engl; 2008; 47(4):697-700. PubMed ID: 18058968
    [No Abstract]   [Full Text] [Related]  

  • 45. Incorporation of noncanonical amino acids into Rosetta and use in computational protein-peptide interface design.
    Renfrew PD; Choi EJ; Bonneau R; Kuhlman B
    PLoS One; 2012; 7(3):e32637. PubMed ID: 22431978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures.
    Ding B; Li N; Wang W
    J Chem Inf Model; 2013 May; 53(5):1213-22. PubMed ID: 23570305
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations.
    Tzoupis H; Leonis G; Avramopoulos A; Mavromoustakos T; Papadopoulos MG
    J Phys Chem B; 2014 Aug; 118(32):9538-52. PubMed ID: 25036111
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomolecular Simulations with the Three-Dimensional Reference Interaction Site Model with the Kovalenko-Hirata Closure Molecular Solvation Theory.
    Roy D; Kovalenko A
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064655
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomolecular electrostatics and solvation: a computational perspective.
    Ren P; Chun J; Thomas DG; Schnieders MJ; Marucho M; Zhang J; Baker NA
    Q Rev Biophys; 2012 Nov; 45(4):427-91. PubMed ID: 23217364
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational carbohydrate chemistry: what theoretical methods can tell us.
    Woods RJ
    Glycoconj J; 1998 Mar; 15(3):209-16. PubMed ID: 9579797
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Parametric Rosetta Energy Function Analysis with LK Peptides on SAM Surfaces.
    Lubin JH; Pacella MS; Gray JJ
    Langmuir; 2018 May; 34(18):5279-5289. PubMed ID: 29630384
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of HIV protease flexibility by the T80N mutation.
    Zhou H; Li S; Badger J; Nalivaika E; Cai Y; Foulkes-Murzycki J; Schiffer C; Makowski L
    Proteins; 2015 Nov; 83(11):1929-39. PubMed ID: 25488402
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation on the mechanism for the binding and drug resistance of wild type and mutations of G86 residue in HIV-1 protease complexed with Darunavir by molecular dynamic simulation and free energy calculation.
    Li D; Zhang Y; Zhao RN; Fan S; Han JG
    J Mol Model; 2014 Feb; 20(2):2122. PubMed ID: 24526384
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rapid approximate calculation of water binding free energies in the whole hydration domain of (bio)macromolecules.
    Reif MM; Zacharias M
    J Comput Chem; 2016 Jul; 37(18):1711-24. PubMed ID: 27185199
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies.
    Meher BR; Wang Y
    J Phys Chem B; 2012 Feb; 116(6):1884-900. PubMed ID: 22239286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structures of HIV protease V82A and L90M mutants reveal changes in the indinavir-binding site.
    Mahalingam B; Wang YF; Boross PI; Tozser J; Louis JM; Harrison RW; Weber IT
    Eur J Biochem; 2004 Apr; 271(8):1516-24. PubMed ID: 15066177
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Residue-centric modeling and design of saccharide and glycoconjugate structures.
    Labonte JW; Adolf-Bryfogle J; Schief WR; Gray JJ
    J Comput Chem; 2017 Feb; 38(5):276-287. PubMed ID: 27900782
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Incorporation of evolutionary information into Rosetta comparative modeling.
    Thompson J; Baker D
    Proteins; 2011 Aug; 79(8):2380-8. PubMed ID: 21638331
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly drug-resistant HIV-1 protease reveals decreased intra-subunit interactions due to clusters of mutations.
    Kneller DW; Agniswamy J; Harrison RW; Weber IT
    FEBS J; 2020 Aug; 287(15):3235-3254. PubMed ID: 31920003
    [TBL] [Abstract][Full Text] [Related]  

  • 60. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations.
    Ishima R; Kurt Yilmaz N; Schiffer CA
    J Biomol NMR; 2019 Jul; 73(6-7):365-374. PubMed ID: 31243634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.