These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 28430460)

  • 1. Subradiance via Entanglement in Atoms with Several Independent Decay Channels.
    Hebenstreit M; Kraus B; Ostermann L; Ritsch H
    Phys Rev Lett; 2017 Apr; 118(14):143602. PubMed ID: 28430460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subradiance in a Large Cloud of Cold Atoms.
    Guerin W; Araújo MO; Kaiser R
    Phys Rev Lett; 2016 Feb; 116(8):083601. PubMed ID: 26967415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cascaded collective decay in regular arrays of cold trapped atoms.
    Ostermann L; Zoubi H; Ritsch H
    Opt Express; 2012 Dec; 20(28):29634-45. PubMed ID: 23388791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superradiance and Subradiance due to Quantum Interference of Entangled Free Electrons.
    Karnieli A; Rivera N; Arie A; Kaminer I
    Phys Rev Lett; 2021 Aug; 127(6):060403. PubMed ID: 34420316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation technique of quantum optical emission process from multiple two-level atoms based on classical numerical method.
    Taniyama H; Sumikura H; Notomi M
    Opt Express; 2019 Apr; 27(9):12070-12079. PubMed ID: 31052752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Super- and sub-radiance from two-dimensional resonant dipole-dipole interactions.
    Jen HH
    Sci Rep; 2019 Apr; 9(1):5804. PubMed ID: 30967605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional Dicke Subradiance with Nonclassical and Classical Light Sources.
    Bhatti D; Schneider R; Oppel S; von Zanthier J
    Phys Rev Lett; 2018 Mar; 120(11):113603. PubMed ID: 29601775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subradiant Bell States in Distant Atomic Arrays.
    Guimond PO; Grankin A; Vasilyev DV; Vermersch B; Zoller P
    Phys Rev Lett; 2019 Mar; 122(9):093601. PubMed ID: 30932531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement between light and an optical atomic excitation.
    Li L; Dudin YO; Kuzmich A
    Nature; 2013 Jun; 498(7455):466-9. PubMed ID: 23783514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity Antiresonance Spectroscopy of Dipole Coupled Subradiant Arrays.
    Plankensteiner D; Sommer C; Ritsch H; Genes C
    Phys Rev Lett; 2017 Sep; 119(9):093601. PubMed ID: 28949558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entangling distant atoms by interference of polarized photons.
    Feng XL; Zhang ZM; Li XD; Gong SQ; Xu ZZ
    Phys Rev Lett; 2003 May; 90(21):217902. PubMed ID: 12786592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subradiant-to-Subradiant Phase Transition in the Bad Cavity Laser.
    Shankar A; Reilly JT; Jäger SB; Holland MJ
    Phys Rev Lett; 2021 Aug; 127(7):073603. PubMed ID: 34459626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavity quantum electrodynamics with atom-like mirrors.
    Mirhosseini M; Kim E; Zhang X; Sipahigil A; Dieterle PB; Keller AJ; Asenjo-Garcia A; Chang DE; Painter O
    Nature; 2019 May; 569(7758):692-697. PubMed ID: 31092923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resonance interaction energy between two entangled atoms in a photonic bandgap environment.
    Notararigo V; Passante R; Rizzuto L
    Sci Rep; 2018 Mar; 8(1):5193. PubMed ID: 29581454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adiabatic passage for three-dimensional entanglement generation through quantum Zeno dynamics.
    Liang Y; Su SL; Wu QC; Ji X; Zhang S
    Opt Express; 2015 Feb; 23(4):5064-77. PubMed ID: 25836541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement-enhanced matter-wave interferometry in a high-finesse cavity.
    Greve GP; Luo C; Wu B; Thompson JK
    Nature; 2022 Oct; 610(7932):472-477. PubMed ID: 36261551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum entanglement via optical control of atom-atom interactions.
    Lukin MD; Hemmer PR
    Phys Rev Lett; 2000 Mar; 84(13):2818-21. PubMed ID: 11018950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subradiance with Saturated Atoms: Population Enhancement of the Long-Lived States.
    Cipris A; Moreira NA; do Espirito Santo TS; Weiss P; Villas-Boas CJ; Kaiser R; Guerin W; Bachelard R
    Phys Rev Lett; 2021 Mar; 126(10):103604. PubMed ID: 33784122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examples of atoms absorbing photon via Schrödinger equation and vacuum fluctuations.
    Zhang Y
    Sci Rep; 2024 Jan; 14(1):983. PubMed ID: 38200170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single Photon Subradiance: Quantum Control of Spontaneous Emission and Ultrafast Readout.
    Scully MO
    Phys Rev Lett; 2015 Dec; 115(24):243602. PubMed ID: 26705632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.