These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2843089)

  • 21. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic improvement of Saccharomyces cerevisiae for ethanol production from xylose.
    Tantirungkij M; Seki T; Yoshida T
    Ann N Y Acad Sci; 1994 May; 721():138-47. PubMed ID: 8010664
    [No Abstract]   [Full Text] [Related]  

  • 23. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells.
    Sakamoto T; Hasunuma T; Hori Y; Yamada R; Kondo A
    J Biotechnol; 2012 Apr; 158(4):203-10. PubMed ID: 21741417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of the Salmonella typhimurium LT2 xylose regulon.
    Ghangas GS; Wilson DB
    J Bacteriol; 1984 Jan; 157(1):158-64. PubMed ID: 6317648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sustainable production of glutathione from lignocellulose-derived sugars using engineered Saccharomyces cerevisiae.
    Kobayashi J; Sasaki D; Bamba T; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1243-1254. PubMed ID: 30448906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning and expression of the genes for xylose isomerase and xylulokinase from Klebsiella pneumoniae 1033 in Escherichia coli K12.
    Feldmann SD; Sahm H; Sprenger GA
    Mol Gen Genet; 1992 Aug; 234(2):201-10. PubMed ID: 1324398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning, and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol.
    Madhavan A; Tamalampudi S; Ushida K; Kanai D; Katahira S; Srivastava A; Fukuda H; Bisaria VS; Kondo A
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1067-78. PubMed ID: 19050860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid and marker-free refactoring of xylose-fermenting yeast strains with Cas9/CRISPR.
    Tsai CS; Kong II; Lesmana A; Million G; Zhang GC; Kim SR; Jin YS
    Biotechnol Bioeng; 2015 Nov; 112(11):2406-11. PubMed ID: 25943337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism.
    Richard P; Toivari MH; Penttilä M
    FEMS Microbiol Lett; 2000 Sep; 190(1):39-43. PubMed ID: 10981687
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes.
    Träff KL; Otero Cordero RR; van Zyl WH; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Dec; 67(12):5668-74. PubMed ID: 11722921
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic transformation of xylose-fermenting yeast Pichia stipitis. Scientific note.
    Ho NW; Petros D; Deng XX
    Appl Biochem Biotechnol; 1991; 28-29():369-75. PubMed ID: 1929374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Process for Assembly and Transformation into Saccharomyces cerevisiae of a Synthetic Yeast Artificial Chromosome Containing a Multigene Cassette to Express Enzymes That Enhance Xylose Utilization Designed for an Automated Platform.
    Hughes SR; Cox EJ; Bang SS; Pinkelman RJ; López-Núñez JC; Saha BC; Qureshi N; Gibbons WR; Fry MR; Moser BR; Bischoff KM; Liu S; Sterner DE; Butt TR; Riedmuller SB; Jones MA; Riaño-Herrera NM
    J Lab Autom; 2015 Dec; 20(6):621-35. PubMed ID: 25720598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes.
    Konishi J; Fukuda A; Mutaguchi K; Uemura T
    Biotechnol Lett; 2015 Aug; 37(8):1623-30. PubMed ID: 25994575
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes.
    Zuo Q; Zhao XQ; Xiong L; Liu HJ; Xu YH; Hu SY; Ma ZY; Zhu QW; Bai FW
    Biochem Biophys Res Commun; 2013 Oct; 440(2):241-4. PubMed ID: 24051089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The complete sequence of the 8.2 kb segment left of MAT on chromosome III reveals five ORFs, including a gene for a yeast ribokinase.
    Thierry A; Fairhead C; Dujon B
    Yeast; 1990; 6(6):521-34. PubMed ID: 1964349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ethanol fermentation from xylose by metabolically engineered strains of Kluyveromyces marxianus.
    Goshima T; Negi K; Tsuji M; Inoue H; Yano S; Hoshino T; Matsushika A
    J Biosci Bioeng; 2013 Nov; 116(5):551-4. PubMed ID: 23871200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Over-expression of xylulokinase in a xylose-metabolising recombinant strain of Zymomonas mobilis.
    Jeon YJ; Svenson CJ; Rogers PL
    FEMS Microbiol Lett; 2005 Mar; 244(1):85-92. PubMed ID: 15727825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lactic acid production from cellobiose and xylose by engineered Saccharomyces cerevisiae.
    Turner TL; Zhang GC; Oh EJ; Subramaniam V; Adiputra A; Subramaniam V; Skory CD; Jang JY; Yu BJ; Park I; Jin YS
    Biotechnol Bioeng; 2016 May; 113(5):1075-83. PubMed ID: 26524688
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.