These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28431172)

  • 1. Quantitative analysis of Li distributions in battery material Li1-xFePO4 using Fe M2,3-edge and valence electron energy loss spectra.
    Kobayashi S; Fisher CAJ; Kuwabara A; Ukyo Y; Ikuhara Y
    Microscopy (Oxf); 2017 Aug; 66(4):254-260. PubMed ID: 28431172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic structure of phospho-olivines Li(x)FePO4 (x = 0, 1) from soft-x-ray-absorption and -emission spectroscopies.
    Augustsson A; Zhuang GV; Butorin SM; Osorio-Guillén JM; Dong CL; Ahuja R; Chang CL; Ross PN; Nordgren J; Guo JH
    J Chem Phys; 2005 Nov; 123(18):184717. PubMed ID: 16292931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing Hybrid LiFePO
    Wang W; Wang R; Zhan R; Du J; Chen Z; Feng R; Tan Y; Hu Y; Ou Y; Yuan Y; Li C; Xiao Y; Sun Y
    Nano Lett; 2023 Aug; 23(16):7485-7492. PubMed ID: 37477256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.
    Castro FC; Dravid VP
    Microsc Microanal; 2018 Jun; 24(3):214-220. PubMed ID: 29877170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS).
    Cosandey F; Su D; Sina M; Pereira N; Amatucci GG
    Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of PO4 tetrahedron in LiFePO4 and FePO4 system.
    Zeng Y
    Microsc Res Tech; 2015 Jun; 78(6):462-71. PubMed ID: 25846750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superstructure in the Metastable Intermediate-Phase Li2/3 FePO4 Accelerating the Lithium Battery Cathode Reaction.
    Nishimura S; Natsui R; Yamada A
    Angew Chem Int Ed Engl; 2015 Jul; 54(31):8939-42. PubMed ID: 26074480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell.
    Deb A; Bergmann U; Cairns EJ; Cramer SP
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local electronic structure of olivine phases of LixFePO4.
    Miao S; Kocher M; Rez P; Fultz B; Yazami R; Ahn CC
    J Phys Chem A; 2007 May; 111(20):4242-7. PubMed ID: 17444619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic mechanism of biphasic interface relaxation in lithium iron phosphate after delithiation.
    Kobayashi S; Kuwabara A; Fisher CAJ; Ukyo Y; Ikuhara Y
    Nat Commun; 2018 Jul; 9(1):2863. PubMed ID: 30030430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large Charge-Transfer Energy in LiFePO
    Asakura D; Nanba Y; Makinose Y; Matsuda H; Glans PA; Guo J; Hosono E
    Chemphyschem; 2018 Apr; 19(8):988-992. PubMed ID: 29388303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IR near-field spectroscopy and imaging of single Li(x)FePO4 microcrystals.
    Lucas IT; McLeod AS; Syzdek JS; Middlemiss DS; Grey CP; Basov DN; Kostecki R
    Nano Lett; 2015 Jan; 15(1):1-7. PubMed ID: 25375874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio identification of the Li-rich phase in LiFePO
    Zeng H; Gu Y; Teng G; Liu Y; Zheng J; Pan F
    Phys Chem Chem Phys; 2018 Jun; 20(25):17497-17503. PubMed ID: 29911701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of lithium content in LiFePO
    Halankar KK; Mandal BP; Jangid MK; Mukhopadhyay A; Meena SS; Acharya R; Tyagi AK
    RSC Adv; 2018 Jan; 8(2):1140-1147. PubMed ID: 35538980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive analysis of TEM methods for LiFePO
    Mu X; Kobler A; Wang D; Chakravadhanula VSK; Schlabach S; Szabó DV; Norby P; Kübel C
    Ultramicroscopy; 2016 Nov; 170():10-18. PubMed ID: 27475893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A STEM/EELS method for mapping iron valence ratios in oxide minerals.
    Cavé L; Al T; Loomer D; Cogswell S; Weaver L
    Micron; 2006; 37(4):301-9. PubMed ID: 16360318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laterally resolved EELS for ELNES mapping of the Fe L 2,3 - and O K-edge.
    Golla-Schindler U; Benner G; Putnis A
    Ultramicroscopy; 2003 Sep; 96(3-4):573-82. PubMed ID: 12871818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of valence and core excitations in LiFePO(4) and FePO(4).
    Kinyanjui MK; Axmann P; Wohlfahrt-Mehrens M; Moreau P; Boucher F; Kaiser U
    J Phys Condens Matter; 2010 Jul; 22(27):275501. PubMed ID: 21399256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic-Scale Observations of (010) LiFePO4 Surfaces Before and After Chemical Delithiation.
    Kobayashi S; Fisher CA; Kato T; Ukyo Y; Hirayama T; Ikuhara Y
    Nano Lett; 2016 Sep; 16(9):5409-14. PubMed ID: 27472440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vacancy-driven anisotropic defect distribution in the battery-cathode material LiFePO4.
    Lee J; Zhou W; Idrobo JC; Pennycook SJ; Pantelides ST
    Phys Rev Lett; 2011 Aug; 107(8):085507. PubMed ID: 21929178
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.