These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 28431740)

  • 21. Grasping two-dimensional images and three-dimensional objects in visual-form agnosia.
    Westwood DA; Danckert J; Servos P; Goodale MA
    Exp Brain Res; 2002 May; 144(2):262-7. PubMed ID: 12012164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas.
    Culham JC; Danckert SL; DeSouza JF; Gati JS; Menon RS; Goodale MA
    Exp Brain Res; 2003 Nov; 153(2):180-9. PubMed ID: 12961051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissociable effects of irrelevant context on 2D and 3D grasping.
    Ozana A; Ganel T
    Atten Percept Psychophys; 2018 Feb; 80(2):564-575. PubMed ID: 29101720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hand shape selection in pantomimed grasping: interaction between the dorsal and the ventral visual streams and convergence on the ventral premotor area.
    Makuuchi M; Someya Y; Ogawa S; Takayama Y
    Hum Brain Mapp; 2012 Aug; 33(8):1821-33. PubMed ID: 21739528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visual control of action directed toward two-dimensional objects relies on holistic processing of object shape.
    Freud E; Ganel T
    Psychon Bull Rev; 2015 Oct; 22(5):1377-82. PubMed ID: 25665797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Planning Ahead: Object-Directed Sequential Actions Decoded from Human Frontoparietal and Occipitotemporal Networks.
    Gallivan JP; Johnsrude IS; Flanagan JR
    Cereb Cortex; 2016 Feb; 26(2):708-30. PubMed ID: 25576538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. DF's visual brain in action: the role of tactile cues.
    Whitwell RL; Milner AD; Cavina-Pratesi C; Byrne CM; Goodale MA
    Neuropsychologia; 2014 Mar; 55():41-50. PubMed ID: 24300664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decoding grip type and action goal during the observation of reaching-grasping actions: A multivariate fMRI study.
    Errante A; Ziccarelli S; Mingolla GP; Fogassi L
    Neuroimage; 2021 Nov; 243():118511. PubMed ID: 34450263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Decoding motor imagery and action planning in the early visual cortex: Overlapping but distinct neural mechanisms.
    Monaco S; Malfatti G; Culham JC; Cattaneo L; Turella L
    Neuroimage; 2020 Sep; 218():116981. PubMed ID: 32454207
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graspable objects grab attention when the potential for action is recognized.
    Handy TC; Grafton ST; Shroff NM; Ketay S; Gazzaniga MS
    Nat Neurosci; 2003 Apr; 6(4):421-7. PubMed ID: 12640459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP.
    Murata A; Gallese V; Luppino G; Kaseda M; Sakata H
    J Neurophysiol; 2000 May; 83(5):2580-601. PubMed ID: 10805659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Programming of left hand exploits task set but that of right hand depends on recent history.
    Tang R; Zhu H
    Exp Brain Res; 2017 Jul; 235(7):2215-2224. PubMed ID: 28451736
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of visual and haptic feedback on grasping movements.
    Bozzacchi C; Volcic R; Domini F
    J Neurophysiol; 2014 Dec; 112(12):3189-96. PubMed ID: 25231616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overlapping representations for grip type and reach direction.
    Fabbri S; Strnad L; Caramazza A; Lingnau A
    Neuroimage; 2014 Jul; 94():138-146. PubMed ID: 24650596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spatiotemporal Distribution of Location and Object Effects in Primary Motor Cortex Neurons during Reach-to-Grasp.
    Rouse AG; Schieber MH
    J Neurosci; 2016 Oct; 36(41):10640-10653. PubMed ID: 27733614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grasping trajectories in a virtual environment adhere to Weber's law.
    Ozana A; Berman S; Ganel T
    Exp Brain Res; 2018 Jun; 236(6):1775-1787. PubMed ID: 29663023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Handedness-dependent and -independent cerebral asymmetries in the anterior intraparietal sulcus and ventral premotor cortex during grasp planning.
    Martin K; Jacobs S; Frey SH
    Neuroimage; 2011 Jul; 57(2):502-12. PubMed ID: 21554968
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for an effector-independent action system from people born without hands.
    Liu Y; Vannuscorps G; Caramazza A; Striem-Amit E
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28433-28441. PubMed ID: 33106395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Planning movements well in advance.
    Hesse C; de Grave DD; Franz VH; Brenner E; Smeets JB
    Cogn Neuropsychol; 2008; 25(7-8):985-95. PubMed ID: 18608330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.