These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28431786)

  • 1. [Ligninolytic enzyme production by white rot fungi during paraquat (herbicide) degradation].
    Camacho-Morales RL; Gerardo-Gerardo JL; Guillén Navarro K; Sánchez JE
    Rev Argent Microbiol; 2017; 49(2):189-196. PubMed ID: 28431786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing the potential of white rot fungi and ligninolytic enzymes for efficient textile dye degradation: A comprehensive review.
    Kumar V; Pallavi P; Sen SK; Raut S
    Water Environ Res; 2024 Jan; 96(1):e10959. PubMed ID: 38204323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane.
    Kaur H; Kapoor S; Kaur G
    Environ Monit Assess; 2016 Oct; 188(10):588. PubMed ID: 27670886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds.
    Scheel T; Höfer M; Ludwig S; Hölker U
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):686-91. PubMed ID: 11131396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Impact of exogenous paraquat on enzyme exudation and biochemical changes of lignin degradation fungi].
    Zhao Y; Li J; Chen Y; Huang H; Yu Z
    Sheng Wu Gong Cheng Xue Bao; 2009 Aug; 25(8):1144-50. PubMed ID: 19938450
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidating the role of media nitrogen in augmenting the production of lignin-depolymerizing enzymes by white-rot fungi.
    Pradeep Kumar V; Sridhar M; Ashis Kumar S; Bhatta R
    Microbiol Spectr; 2023 Sep; 11(5):e0141923. PubMed ID: 37655898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A proposed stepwise screening framework for the selection of polycyclic aromatic hydrocarbon (PAH)-degrading white rot fungi.
    Lee AH; Lee H; Heo YM; Lim YW; Kim CM; Kim GH; Chang W; Kim JJ
    Bioprocess Biosyst Eng; 2020 May; 43(5):767-783. PubMed ID: 31938872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Lignin degradation by Penicillium simplicissimum].
    Yu HY; Zeng GM; Huang GH; Huang DL; Chen YN
    Huan Jing Ke Xue; 2005 Mar; 26(2):167-71. PubMed ID: 16004322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of light on lignin-degrading activities of fungal genus Polyporus s. str.
    Grassi E; Robledo G; Levin L
    J Basic Microbiol; 2018 Nov; 58(11):947-956. PubMed ID: 30113074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Treatment of colored effluents with lignin-degrading enzymes: an emerging role of marine-derived fungi.
    Raghukumar C; D'Souza-Ticlo D; Verma AK
    Crit Rev Microbiol; 2008; 34(3-4):189-206. PubMed ID: 19003603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative dechlorination of methoxychlor by ligninolytic enzymes from white-rot fungi.
    Hirai H; Nakanishi S; Nishida T
    Chemosphere; 2004 Apr; 55(4):641-5. PubMed ID: 15006517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filamentous fungi with high paraquat-degrading activity isolated from contaminated agricultural soils in northern Thailand.
    Wongputtisin P; Supo C; Suwannarach N; Honda Y; Nakazawa T; Kumla J; Lumyong S; Khanongnuch C
    Lett Appl Microbiol; 2021 Apr; 72(4):467-475. PubMed ID: 33305426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of glyphosate and other pesticides by ligninolytic enzymes.
    Pizzul L; Castillo Mdel P; Stenström J
    Biodegradation; 2009 Nov; 20(6):751-9. PubMed ID: 19396551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of incubation temperature on activity of ligninolytic enzymes in sterile soil by Pleurotus sp. and Dichomitus squalens.
    Lang E; Gonser A; Zadrazil F
    J Basic Microbiol; 2000; 40(1):33-9. PubMed ID: 10746197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved.
    Christian V; Shrivastava R; Shukla D; Modi HA; Vyas BR
    Indian J Exp Biol; 2005 Apr; 43(4):301-12. PubMed ID: 15875713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13.
    Teerapatsakul C; Pothiratana C; Chitradon L; Thachepan S
    J Gen Appl Microbiol; 2017 Jan; 62(6):303-312. PubMed ID: 27885193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterns of lignin degradation and oxidative enzyme secretion by different wood- and litter-colonizing basidiomycetes and ascomycetes grown on beech-wood.
    Liers C; Arnstadt T; Ullrich R; Hofrichter M
    FEMS Microbiol Ecol; 2011 Oct; 78(1):91-102. PubMed ID: 21631549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.