BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 28432123)

  • 1. An amphipathic α-helix directs palmitoylation of the large intracellular loop of the sodium/calcium exchanger.
    Plain F; Congreve SD; Yee RSZ; Kennedy J; Howie J; Kuo CW; Fraser NJ; Fuller W
    J Biol Chem; 2017 Jun; 292(25):10745-10752. PubMed ID: 28432123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Palmitoylation of the Na/Ca exchanger cytoplasmic loop controls its inactivation and internalization during stress signaling.
    Reilly L; Howie J; Wypijewski K; Ashford ML; Hilgemann DW; Fuller W
    FASEB J; 2015 Nov; 29(11):4532-43. PubMed ID: 26174834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of NCX1 by palmitoylation.
    Gök C; Fuller W
    Cell Calcium; 2020 Mar; 86():102158. PubMed ID: 31935590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Palmitoylation of the Sodium-Calcium Exchanger Modulates Its Structure, Affinity for Lipid-Ordered Domains, and Inhibition by XIP.
    Gök C; Plain F; Robertson AD; Howie J; Baillie GS; Fraser NJ; Fuller W
    Cell Rep; 2020 Jun; 31(10):107697. PubMed ID: 32521252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topical review: Shedding light on molecular and cellular consequences of NCX1 palmitoylation.
    Gök C; Fuller W
    Cell Signal; 2020 Dec; 76():109791. PubMed ID: 32980495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How a helix imposes palmitoylation of a membrane protein: What one can learn from NCX.
    Khananshvili D
    J Biol Chem; 2017 Jun; 292(25):10753-10754. PubMed ID: 28646126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rise of palmitoylation: A new trick to tune NCX1 activity.
    Gök C; Fuller W
    Biochim Biophys Acta Mol Cell Res; 2024 Jun; 1871(5):119719. PubMed ID: 38574822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insulin-induced palmitoylation regulates the Cardiac Na
    Gök C; Robertson AD; Fuller W
    Cell Calcium; 2022 Jun; 104():102567. PubMed ID: 35231700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the molecular basis of the palmitoylation and depalmitoylation of NCX1.
    Gök C; Main A; Gao X; Kerekes Z; Plain F; Kuo CW; Robertson AD; Fraser NJ; Fuller W
    Cell Calcium; 2021 Apr; 97():102408. PubMed ID: 33873072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palmitoylation: A new mechanism for control of NCX1 function.
    Veseli E; Soboloff J
    Cell Calcium; 2020 Nov; 91():102254. PubMed ID: 32721571
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The inhibitory effect of phospholemman on the sodium pump requires its palmitoylation.
    Tulloch LB; Howie J; Wypijewski KJ; Wilson CR; Bernard WG; Shattock MJ; Fuller W
    J Biol Chem; 2011 Oct; 286(41):36020-36031. PubMed ID: 21868384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel.
    Mueller GM; Maarouf AB; Kinlough CL; Sheng N; Kashlan OB; Okumura S; Luthy S; Kleyman TR; Hughey RP
    J Biol Chem; 2010 Oct; 285(40):30453-62. PubMed ID: 20663869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the rules governing NCX1 palmitoylation.
    Plain F; Turnbull D; Fraser NJ; Fuller W
    Channels (Austin); 2017 Sep; 11(5):377-379. PubMed ID: 28617626
    [No Abstract]   [Full Text] [Related]  

  • 14. Three Na+/Ca2+ exchanger (NCX) variants are expressed in mouse osteoclasts and mediate calcium transport during bone resorption.
    Li JP; Kajiya H; Okamoto F; Nakao A; Iwamoto T; Okabe K
    Endocrinology; 2007 May; 148(5):2116-25. PubMed ID: 17317768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-palmitoylation and the regulation of NCX1.
    Fuller W; Reilly L; Hilgemann DW
    Channels (Austin); 2016; 10(2):75-7. PubMed ID: 26418268
    [No Abstract]   [Full Text] [Related]  

  • 16. Calmodulin Interacts with the Sodium/Calcium Exchanger NCX1 to Regulate Activity.
    Chou AC; Ju YT; Pan CY
    PLoS One; 2015; 10(9):e0138856. PubMed ID: 26421717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino-terminal cysteine residues differentially influence RGS4 protein plasma membrane targeting, intracellular trafficking, and function.
    Bastin G; Singh K; Dissanayake K; Mighiu AS; Nurmohamed A; Heximer SP
    J Biol Chem; 2012 Aug; 287(34):28966-74. PubMed ID: 22753418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular determinants of Na+/Ca2+ exchange (NCX1) inhibition by SEA0400.
    Iwamoto T; Kita S; Uehara A; Imanaga I; Matsuda T; Baba A; Katsuragi T
    J Biol Chem; 2004 Feb; 279(9):7544-53. PubMed ID: 14660663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-function analysis of CALX1.1, a Na+-Ca2+ exchanger from Drosophila. Mutagenesis of ionic regulatory sites.
    Dyck C; Maxwell K; Buchko J; Trac M; Omelchenko A; Hnatowich M; Hryshko LV
    J Biol Chem; 1998 May; 273(21):12981-7. PubMed ID: 9582332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of TRPP3 Channel Function by N-terminal Domain Palmitoylation and Phosphorylation.
    Zheng W; Yang J; Beauchamp E; Cai R; Hussein S; Hofmann L; Li Q; Flockerzi V; Berthiaume LG; Tang J; Chen XZ
    J Biol Chem; 2016 Dec; 291(49):25678-25691. PubMed ID: 27754867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.