BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 2843229)

  • 21. Electron transfer through center o of the cytochrome b-c1 complex of yeast mitochondria involves subunit VII, the ubiquinone-binding protein.
    Japa S; Beattie DS
    J Biol Chem; 1989 Aug; 264(24):13994-7. PubMed ID: 2547777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reduction of cytochrome b in mitochondria from yeast lacking coenzyme Q.
    Clejan L; Beattie DS
    Biochemistry; 1986 Dec; 25(24):7984-91. PubMed ID: 3542040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol:cytochrome c oxidoreductase.
    De Vries S; Albracht SP; Berden JA; Marres CA; Slater EC
    Biochim Biophys Acta; 1983 Apr; 723(1):91-103. PubMed ID: 6299337
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The absorbance coefficient of beef heart cytochrome c1.
    Tervoort MJ; Schilder LT; Van Gelder BF
    Biochim Biophys Acta; 1981 Sep; 637(2):245-51. PubMed ID: 6271196
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of ring substituents on the mechanism of interaction of exogenous quinones with the mitochondrial respiratory chain.
    Chen M; Liu BL; Gu LQ; Zhu QS
    Biochim Biophys Acta; 1986 Oct; 851(3):469-74. PubMed ID: 3019395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduction of exogenous quinones and 2,6-dichlorophenol indophenol in cytochrome b-deficient yeast mitochondria: a differential effect on center i and center o of the cytochrome b-c1 complex.
    Zhu QS; Sprague SG; Beattie DS
    Arch Biochem Biophys; 1988 Sep; 265(2):447-53. PubMed ID: 2844120
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria contains one cooperative ubiquinone-reduction centre.
    Linke P; Bechmann G; Gothe A; Weiss H
    Eur J Biochem; 1986 Aug; 158(3):615-21. PubMed ID: 3015618
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles.
    Nicholls P
    Biochim Biophys Acta; 1976 Apr; 430(1):30-45. PubMed ID: 177075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric and redox-specific binding of quinone and quinol at center N of the dimeric yeast cytochrome bc1 complex. Consequences for semiquinone stabilization.
    Covian R; Zwicker K; Rotsaert FA; Trumpower BL
    J Biol Chem; 2007 Aug; 282(33):24198-208. PubMed ID: 17584742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pathway of electrons through OH2:cytochrome c oxidoreductase studied by pre-steady -state kinetics.
    De Vries S; Albracht SP; Berden JA; Slater EC
    Biochim Biophys Acta; 1982 Jul; 681(1):41-53. PubMed ID: 6288082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle.
    Quinlan CL; Gerencser AA; Treberg JR; Brand MD
    J Biol Chem; 2011 Sep; 286(36):31361-72. PubMed ID: 21708945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral responses of cytochrome b to inhibitors of the mitochondrial cytochrome bc1 segment in drug-resistant strains of Saccharomyces cerevisiae [proceedings].
    Briquet M; Colson AM; Goffeau A
    Arch Int Physiol Biochim; 1979 Aug; 87(3):613-5. PubMed ID: 93451
    [No Abstract]   [Full Text] [Related]  

  • 33. The relationship between electron flux and the redox poise of the quinone pool in plant mitochondria. Interplay between quinol-oxidizing and quinone-reducing pathways.
    Van den Bergen CW; Wagner AM; Krab K; Moore AL
    Eur J Biochem; 1994 Dec; 226(3):1071-8. PubMed ID: 7813462
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Flash-induced electron transfer through mitochondrial QH2: cytochrome c oxidoreductase in the presence of bacterial reaction centres and cytochrome c. Analysis of subsequent processes and effect of inhibitors.
    Zhu QS; Van der Wal HN; Van Grondelle R; Berden JA
    Biochim Biophys Acta; 1984 Apr; 765(1):48-57. PubMed ID: 6324866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electron transfer through the isolated mitochondrial cytochrome b-c1 complex.
    Rich PR
    Biochim Biophys Acta; 1983 Feb; 722(2):271-80. PubMed ID: 6301551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple Q-cycle bypass reactions at the Qo site of the cytochrome bc1 complex.
    Muller F; Crofts AR; Kramer DM
    Biochemistry; 2002 Jun; 41(25):7866-74. PubMed ID: 12069575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The semiquinone cycle. A hypothesis of electron transfer and proton translocation in cytochrome bc-type complexes.
    Wikström M; Krab K
    J Bioenerg Biomembr; 1986 Jun; 18(3):181-93. PubMed ID: 3015895
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The ubiquinol/bc1 redox couple regulates mitochondrial oxygen radical formation.
    Gille L; Nohl H
    Arch Biochem Biophys; 2001 Apr; 388(1):34-8. PubMed ID: 11361137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of electron transfer between cardiac cytochromes c1 and c.
    Kim CH; Balny C; King TE
    Proc Natl Acad Sci U S A; 1984 Apr; 81(7):2026-9. PubMed ID: 6326099
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The pathway of electron flow through ubiquinol:cytochrome c oxidoreductase in the respiratory chain. Evidence from inhibition studies for a modified 'Q cycle'.
    Halestrap AP
    Biochem J; 1982 Apr; 204(1):49-59. PubMed ID: 6288019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.