These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 28432331)

  • 21. Low loss sensitivity of the anapole mode in localized defective nanoparticles.
    Zhang Y; Chen G; Zhao J; Niu C; Wang Z
    Appl Opt; 2023 Apr; 62(11):2952-2959. PubMed ID: 37133140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Radiative Toroidal Dipole and Anapole Excitations in Collectively Responding Arrays of Atoms.
    Ballantine KE; Ruostekoski J
    Phys Rev Lett; 2020 Aug; 125(6):063201. PubMed ID: 32845681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Observations on "nonradiating surface sources": comment.
    Marengo EA
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jan; 23(1):142-5. PubMed ID: 16478070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anapole: Its birth, life, and death.
    Svyakhovskiy SE; Ternovski VV; Tribelsky MI
    Opt Express; 2019 Aug; 27(17):23894-23904. PubMed ID: 31510287
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Boosting third-harmonic generation by a mirror-enhanced anapole resonator.
    Xu L; Rahmani M; Zangeneh Kamali K; Lamprianidis A; Ghirardini L; Sautter J; Camacho-Morales R; Chen H; Parry M; Staude I; Zhang G; Neshev D; Miroshnichenko AE
    Light Sci Appl; 2018; 7():44. PubMed ID: 30839609
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.
    Timofeeva M; Lang L; Timpu F; Renaut C; Bouravleuv A; Shtrom I; Cirlin G; Grange R
    Nano Lett; 2018 Jun; 18(6):3695-3702. PubMed ID: 29771127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate.
    Chen XW; Lee KG; Eghlidi H; Götzinger S; Sandoghdar V
    Opt Express; 2015 Dec; 23(26):32986-92. PubMed ID: 26831966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two-particle nonlocal Aharonov-Bohm effect from two single-particle emitters.
    Splettstoesser J; Moskalets M; Büttiker M
    Phys Rev Lett; 2009 Aug; 103(7):076804. PubMed ID: 19792674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Telegraph noise and fractional statistics in the quantum Hall effect.
    Kane CL
    Phys Rev Lett; 2003 Jun; 90(22):226802. PubMed ID: 12857331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic Aharonov-Bohm effect induced by quantum vibrations.
    Shekhter RI; Gorelik LY; Glazman LI; Jonson M
    Phys Rev Lett; 2006 Oct; 97(15):156801. PubMed ID: 17155349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Measurement of the radiative and nonradiative decay rates of single CdSe nanocrystals through a controlled modification of their spontaneous emission.
    Brokmann X; Coolen L; Dahan M; Hermier JP
    Phys Rev Lett; 2004 Sep; 93(10):107403. PubMed ID: 15447451
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kondo resonance in a mesoscopic ring coupled to a quantum dot: exact results for the Aharonov-Bohm-Casher effects.
    Eckle HP; Johannesson H; Stafford CA
    Phys Rev Lett; 2001 Jul; 87(1):016602. PubMed ID: 11461484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tunable pseudogap Kondo effect and quantum phase transitions in Aharonov-Bohm interferometers.
    Dias da Silva LG; Sandler N; Simon P; Ingersent K; Ulloa SE
    Phys Rev Lett; 2009 Apr; 102(16):166806. PubMed ID: 19518741
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effective beam separation schemes for the measurement of the electric Aharonov-Bohm effect in an ion interferometer.
    Schütz G; Rembold A; Pooch A; Prochel H; Stibor A
    Ultramicroscopy; 2015 Nov; 158():65-73. PubMed ID: 26188995
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission.
    Chen XW; Agio M; Sandoghdar V
    Phys Rev Lett; 2012 Jun; 108(23):233001. PubMed ID: 23003950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Locality and topology in the molecular Aharonov-Bohm effect.
    Sjöqvist E
    Phys Rev Lett; 2002 Nov; 89(21):210401. PubMed ID: 12443394
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical estimates of the anapole magnetizabilities of C₄H₄X₂ cyclic molecules for X=O, S, Se, and Te.
    Pagola GI; Ferraro MB; Provasi PF; Pelloni S; Lazzeretti P
    J Chem Phys; 2014 Sep; 141(9):094305. PubMed ID: 25194370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-particle Aharonov-Bohm effect and entanglement in the electronic Hanbury Brown-Twiss setup.
    Samuelsson P; Sukhorukov EV; Büttiker M
    Phys Rev Lett; 2004 Jan; 92(2):026805. PubMed ID: 14753955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonradiating surface sources.
    Devaney AJ
    J Opt Soc Am A Opt Image Sci Vis; 2004 Nov; 21(11):2216-22. PubMed ID: 15535380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flux-free conductance modulation in a helical Aharonov--Bohm interferometer.
    Taira H; Shima H
    J Phys Condens Matter; 2010 Jun; 22(24):245302. PubMed ID: 21393780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.