These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28432362)

  • 1. Succinate supplementation improves metabolic performance of mixed glial cell cultures with mitochondrial dysfunction.
    Giorgi-Coll S; Amaral AI; Hutchinson PJA; Kotter MR; Carpenter KLH
    Sci Rep; 2017 Apr; 7(1):1003. PubMed ID: 28432362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Focally administered succinate improves cerebral metabolism in traumatic brain injury patients with mitochondrial dysfunction.
    Khellaf A; Garcia NM; Tajsic T; Alam A; Stovell MG; Killen MJ; Howe DJ; Guilfoyle MR; Jalloh I; Timofeev I; Murphy MP; Carpenter TA; Menon DK; Ercole A; Hutchinson PJ; Carpenter KL; Thelin EP; Helmy A
    J Cereb Blood Flow Metab; 2022 Jan; 42(1):39-55. PubMed ID: 34494481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of succinate on brain NADH/NAD
    Stovell MG; Mada MO; Helmy A; Carpenter TA; Thelin EP; Yan JL; Guilfoyle MR; Jalloh I; Howe DJ; Grice P; Mason A; Giorgi-Coll S; Gallagher CN; Murphy MP; Menon DK; Hutchinson PJ; Carpenter KLH
    Sci Rep; 2018 Jul; 8(1):11140. PubMed ID: 30042490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beneficial Effects of Kaempferol after Developmental Traumatic Brain Injury Is through Protection of Mitochondrial Function, Oxidative Metabolism, and Neural Viability.
    Chitturi J; Santhakumar V; Kannurpatti SS
    J Neurotrauma; 2019 Apr; 36(8):1264-1278. PubMed ID: 30430900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succinate ameliorates energy deficits and prevents dysfunction of complex I in injured renal proximal tubular cells.
    Nowak G; Clifton GL; Bakajsova D
    J Pharmacol Exp Ther; 2008 Mar; 324(3):1155-62. PubMed ID: 18055880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuronal bioenergetics and acute mitochondrial dysfunction: a clue to understanding the central nervous system side effects of efavirenz.
    Funes HA; Apostolova N; Alegre F; Blas-Garcia A; Alvarez A; Marti-Cabrera M; Esplugues JV
    J Infect Dis; 2014 Nov; 210(9):1385-95. PubMed ID: 24813473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of neuroprotection by glucose in rat retinal cell cultures subjected to respiratory inhibition.
    Han G; Wood JP; Chidlow G; Mammone T; Casson RJ
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7567-77. PubMed ID: 24150756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide as a potential pathological mechanism in demyelination: its differential effects on primary glial cells in vitro.
    Mitrovic B; Ignarro LJ; Montestruque S; Smoll A; Merrill JE
    Neuroscience; 1994 Aug; 61(3):575-85. PubMed ID: 7969931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Focally perfused succinate potentiates brain metabolism in head injury patients.
    Jalloh I; Helmy A; Howe DJ; Shannon RJ; Grice P; Mason A; Gallagher CN; Stovell MG; van der Heide S; Murphy MP; Pickard JD; Menon DK; Carpenter TA; Hutchinson PJ; Carpenter KL
    J Cereb Blood Flow Metab; 2017 Jul; 37(7):2626-2638. PubMed ID: 27798266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury.
    Millet A; Cuisinier A; Bouzat P; Batandier C; Lemasson B; Stupar V; Pernet-Gallay K; Crespy T; Barbier EL; Payen JF
    Br J Anaesth; 2018 Jun; 120(6):1295-1303. PubMed ID: 29793596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetic restoration and neuroprotection after therapeutic targeting of mitoNEET: New mechanism of pioglitazone following traumatic brain injury.
    Yonutas HM; Hubbard WB; Pandya JD; Vekaria HJ; Geldenhuys WJ; Sullivan PG
    Exp Neurol; 2020 May; 327():113243. PubMed ID: 32057797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial dysfunction in glial cells: Implications for neuronal homeostasis and survival.
    Rose J; Brian C; Woods J; Pappa A; Panayiotidis MI; Powers R; Franco R
    Toxicology; 2017 Nov; 391():109-115. PubMed ID: 28655545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in energy metabolism due to acute rotenone-induced mitochondrial complex I dysfunction - An in vivo large animal model.
    Karlsson M; Ehinger JK; Piel S; Sjövall F; Henriksnäs J; Höglund U; Hansson MJ; Elmér E
    Mitochondrion; 2016 Nov; 31():56-62. PubMed ID: 27769952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmalonate inhibits succinate-supported oxygen consumption by interfering with mitochondrial succinate uptake.
    Mirandola SR; Melo DR; Schuck PF; Ferreira GC; Wajner M; Castilho RF
    J Inherit Metab Dis; 2008 Feb; 31(1):44-54. PubMed ID: 18213522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adenosine production by brain cells.
    Jackson EK; Kotermanski SE; Menshikova EV; Dubey RK; Jackson TC; Kochanek PM
    J Neurochem; 2017 Jun; 141(5):676-693. PubMed ID: 28294336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex.
    Mkrtchyan GV; Üçal M; Müllebner A; Dumitrescu S; Kames M; Moldzio R; Molcanyi M; Schaefer S; Weidinger A; Schaefer U; Hescheler J; Duvigneau JC; Redl H; Bunik VI; Kozlov AV
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):925-931. PubMed ID: 29777685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species are generated by the respiratory complex II--evidence for lack of contribution of the reverse electron flow in complex I.
    Moreno-Sánchez R; Hernández-Esquivel L; Rivero-Segura NA; Marín-Hernández A; Neuzil J; Ralph SJ; Rodríguez-Enríquez S
    FEBS J; 2013 Feb; 280(3):927-38. PubMed ID: 23206332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theophylline treatment improves mitochondrial function after upper cervical spinal cord hemisection.
    Hüttemann M; Nantwi KD; Lee I; Liu J; Mohiuddin S; Petrov T
    Exp Neurol; 2010 Jun; 223(2):523-8. PubMed ID: 20144890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vitamin E succinate protects hepatocytes against the toxic effect of reactive oxygen species generated at mitochondrial complexes I and III by alkylating agents.
    Zhang JG; Nicholls-Grzemski FA; Tirmenstein MA; Fariss MW
    Chem Biol Interact; 2001 Dec; 138(3):267-84. PubMed ID: 11714483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.