BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28432364)

  • 1. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils.
    Lu Y; Lim L; Song J
    Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS.
    Lee M; Ghosh U; Thurber KR; Kato M; Tycko R
    Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP binds and inhibits the neurodegeneration-associated fibrillization of the FUS RRM domain.
    Kang J; Lim L; Song J
    Commun Biol; 2019; 2():223. PubMed ID: 31240261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity.
    Monahan Z; Ryan VH; Janke AM; Burke KA; Rhoads SN; Zerze GH; O'Meally R; Dignon GL; Conicella AE; Zheng W; Best RB; Cole RN; Mittal J; Shewmaker F; Fawzi NL
    EMBO J; 2017 Oct; 36(20):2951-2967. PubMed ID: 28790177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy.
    Murray DT; Tycko R
    Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.
    Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R
    Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALS-Causing Mutations Significantly Perturb the Self-Assembly and Interaction with Nucleic Acid of the Intrinsically Disordered Prion-Like Domain of TDP-43.
    Lim L; Wei Y; Lu Y; Song J
    PLoS Biol; 2016 Jan; 14(1):e1002338. PubMed ID: 26735904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores.
    Kato M; McKnight SL
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34654750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA recognition motifs of disease-linked RNA-binding proteins contribute to amyloid formation.
    Agrawal S; Kuo PH; Chu LY; Golzarroshan B; Jain M; Yuan HS
    Sci Rep; 2019 Apr; 9(1):6171. PubMed ID: 30992467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation.
    Ding X; Sun F; Chen J; Chen L; Tobin-Miyaji Y; Xue S; Qiang W; Luo SZ
    J Mol Biol; 2020 Jan; 432(2):467-483. PubMed ID: 31805282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides.
    Lao Z; Tang Y; Dong X; Tan Y; Li X; Liu X; Li L; Guo C; Wei G
    Nanoscale; 2024 Feb; 16(8):4025-4038. PubMed ID: 38347806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined NMR and EPR investigation on the effect of the disordered RGG regions in the structure and the activity of the RRM domain of FUS.
    Bonucci A; Murrali MG; Banci L; Pierattelli R
    Sci Rep; 2020 Dec; 10(1):20956. PubMed ID: 33262375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants.
    Kumar A; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D
    J Phys Chem Lett; 2021 Sep; 12(37):9026-9032. PubMed ID: 34516126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Folding and Aggregation Energy Landscapes of Tethered RRM Domains of Human TDP-43 Are Coupled via a Metastable Molten Globule-like Oligomer.
    Pillai M; Jha SK
    Biochemistry; 2019 Feb; 58(6):608-620. PubMed ID: 30520297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unusual RNA binding of FUS RRM studied by molecular dynamics simulation and enhanced sampling method.
    Basu S; Alagar S; Bahadur RP
    Biophys J; 2021 May; 120(9):1765-1776. PubMed ID: 33705755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC.
    Berkeley RF; Kashefi M; Debelouchina GT
    Biophys J; 2021 Apr; 120(7):1276-1287. PubMed ID: 33607084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ALS-causing hPFN1 mutants differentially disrupt LLPS of FUS prion-like domain.
    Kang J; Lim L; Song J
    Biochem Biophys Res Commun; 2023 Jul; 664():35-42. PubMed ID: 37130459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.
    Burke KA; Janke AM; Rhine CL; Fawzi NL
    Mol Cell; 2015 Oct; 60(2):231-41. PubMed ID: 26455390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tethering-induced destabilization and ATP-binding for tandem RRM domains of ALS-causing TDP-43 and hnRNPA1.
    Dang M; Li Y; Song J
    Sci Rep; 2021 Jan; 11(1):1034. PubMed ID: 33441818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified mechanism for LLPS of ALS/FTLD-causing FUS as well as its modulation by ATP and oligonucleic acids.
    Kang J; Lim L; Lu Y; Song J
    PLoS Biol; 2019 Jun; 17(6):e3000327. PubMed ID: 31188823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.