These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28432390)

  • 1. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical production of bioenergy from agricultural crops and residue in Iran.
    Karimi Alavijeh M; Yaghmaei S
    Waste Manag; 2016 Jun; 52():375-94. PubMed ID: 27012716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the availability of agricultural crop residues in the European Union: potential and limitations for bioenergy use.
    Scarlat N; Martinov M; Dallemand JF
    Waste Manag; 2010 Oct; 30(10):1889-97. PubMed ID: 20494567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Landscape patterns of bioenergy in a changing climate: implications for crop allocation and land-use competition.
    Graves RA; Pearson SM; Turner MG
    Ecol Appl; 2016 Mar; 26(2):515-29. PubMed ID: 27209792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon consequences and agricultural implications of growing biofuel crops on marginal agricultural lands in China.
    Qin Z; Zhuang Q; Zhu X; Cai X; Zhang X
    Environ Sci Technol; 2011 Dec; 45(24):10765-72. PubMed ID: 22085109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Straw use and availability for second generation biofuels in England.
    Glithero NJ; Wilson P; Ramsden SJ
    Biomass Bioenergy; 2013 Aug; 55():311-321. PubMed ID: 27667905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Land Use Change to Agriculture in the U.S. Lake States: Impacts on Cellulosic Biomass Potential and Natural Lands.
    Mladenoff DJ; Sahajpal R; Johnson CP; Rothstein DE
    PLoS One; 2016; 11(2):e0148566. PubMed ID: 26866474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The water footprint of bioenergy.
    Gerbens-Leenes W; Hoekstra AY; van der Meer TH
    Proc Natl Acad Sci U S A; 2009 Jun; 106(25):10219-23. PubMed ID: 19497862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Logistics system design for biomass-to-bioenergy industry with multiple types of feedstocks.
    Zhu X; Yao Q
    Bioresour Technol; 2011 Dec; 102(23):10936-45. PubMed ID: 21974884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks.
    Raman JK; Alves CM; Gnansounou E
    Bioresour Technol; 2018 Feb; 249():1044-1051. PubMed ID: 29146310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mini review on renewable sources for biofuel.
    Ho DP; Ngo HH; Guo W
    Bioresour Technol; 2014 Oct; 169():742-749. PubMed ID: 25115598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of energy crops: a strategy for biofuel production in China.
    Xie G; Peng L
    J Integr Plant Biol; 2011 Feb; 53(2):143-50. PubMed ID: 21205188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pesticide runoff from energy crops: A threat to aquatic invertebrates?
    Bunzel K; Schäfer RB; Thrän D; Kattwinkel M
    Sci Total Environ; 2015 Dec; 537():187-96. PubMed ID: 26282752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration.
    Molina-Guerrero CE; Sanchez A; Vázquez-Núñez E
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28607-28622. PubMed ID: 32285389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel framework to classify marginal land for sustainable biomass feedstock production.
    Gopalakrishnan G; Cristina Negri M; Snyder SW
    J Environ Qual; 2011; 40(5):1593-600. PubMed ID: 21869522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of bioenergy on biodiversity arising from land-use change and crop type.
    Núñez-Regueiro MM; Siddiqui SF; Fletcher RJ
    Conserv Biol; 2021 Feb; 35(1):77-87. PubMed ID: 31854480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable bioenergy production from marginal lands in the US Midwest.
    Gelfand I; Sahajpal R; Zhang X; Izaurralde RC; Gross KL; Robertson GP
    Nature; 2013 Jan; 493(7433):514-7. PubMed ID: 23334409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK.
    Bauen AW; Dunnett AJ; Richter GM; Dailey AG; Aylott M; Casella E; Taylor G
    Bioresour Technol; 2010 Nov; 101(21):8132-43. PubMed ID: 20624602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agent-Based Life Cycle Assessment enables joint economic-environmental analysis of policy to support agricultural biomass for biofuels.
    López I Losada R; Rosenbaum RK; Brady MV; Wilhelmsson F; Hedlund K
    Sci Total Environ; 2024 Mar; 916():170264. PubMed ID: 38253104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life cycle environmental sustainability and cumulative energy assessment of biomass pellets biofuel derived from agroforest residues.
    Rashedi A; Gul N; Hussain M; Hadi R; Khan N; Nadeem SG; Khanam T; Asyraf MRM; Kumar V
    PLoS One; 2022; 17(10):e0275005. PubMed ID: 36206274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.